trinit
This commit is contained in:
parent
3f7f1c6fcf
commit
0ccb79bd40
@ -4,7 +4,7 @@ open import Trinitarianism.Quest0Preamble
|
||||
private
|
||||
postulate
|
||||
u : Level
|
||||
A : Type u
|
||||
|
||||
|
||||
{-
|
||||
There are three ways of looking at `A : Type u`.
|
||||
@ -147,8 +147,12 @@ unlike Type Theory!)
|
||||
|
||||
-}
|
||||
|
||||
postulate
|
||||
A : Type u
|
||||
|
||||
|
||||
NNO : A → (A → A) → (ℕ → A)
|
||||
NNO a s zero = a
|
||||
NNO a s (suc n) = s (NNO a s n)
|
||||
|
||||
|
||||
|
||||
|
@ -127,8 +127,7 @@ We can see `ℕ` as a categorical notion:
|
||||
with `zero : ⊤ → ℕ` and `suc : ℕ → ℕ` such that
|
||||
given any `⊤ → A → A` there exist a unique morphism `ℕ → A`
|
||||
such that the diagram commutes:
|
||||
<img src="images/nno.png" alt="nno" width="200"/>
|
||||
|
||||
<img src="images/nno.png" alt="nno" width="400"/>
|
||||
|
||||
This has no interpretation as a proposition since
|
||||
there are too many terms,
|
||||
@ -137,8 +136,7 @@ between proofs of the same thing.
|
||||
(ZFC doesn't even mention logic internally,
|
||||
unlike Type Theory!)
|
||||
|
||||
To see how to use terms of type `ℕ`, i.e. induct on `ℕ`,
|
||||
go to Quest1!
|
||||
|
||||
|
||||
|
||||
-}
|
||||
|
||||
|
@ -28,7 +28,7 @@ In category theory, types are objects and terms are generalised elements.
|
||||
- and / pairs / product
|
||||
- implication / functions / internal hom
|
||||
|
||||
# Dependent Types
|
||||
## Dependent Types
|
||||
|
||||
- predicate / type family / over category
|
||||
- substitution / substitution / pullback
|
||||
|
Loading…
Reference in New Issue
Block a user