From 0ccb79bd400a8133084830746f1f8d7b90c83bfc Mon Sep 17 00:00:00 2001 From: jlh Date: Wed, 21 Jul 2021 17:33:08 +0100 Subject: [PATCH] trinit --- Trinitarianism/Quest0.agda | 8 ++++++-- Trinitarianism/Quest0.md | 8 +++----- Trinitarianism/README.md | 2 +- 3 files changed, 10 insertions(+), 8 deletions(-) diff --git a/Trinitarianism/Quest0.agda b/Trinitarianism/Quest0.agda index 9aeccb3..39c894e 100644 --- a/Trinitarianism/Quest0.agda +++ b/Trinitarianism/Quest0.agda @@ -4,7 +4,7 @@ open import Trinitarianism.Quest0Preamble private postulate u : Level - A : Type u + {- There are three ways of looking at `A : Type u`. @@ -147,8 +147,12 @@ unlike Type Theory!) -} +postulate + A : Type u - +NNO : A → (A → A) → (ℕ → A) +NNO a s zero = a +NNO a s (suc n) = s (NNO a s n) diff --git a/Trinitarianism/Quest0.md b/Trinitarianism/Quest0.md index 0b2ee50..74cdba6 100644 --- a/Trinitarianism/Quest0.md +++ b/Trinitarianism/Quest0.md @@ -127,8 +127,7 @@ We can see `ℕ` as a categorical notion: with `zero : ⊤ → ℕ` and `suc : ℕ → ℕ` such that given any `⊤ → A → A` there exist a unique morphism `ℕ → A` such that the diagram commutes: -nno - +nno This has no interpretation as a proposition since there are too many terms, @@ -137,8 +136,7 @@ between proofs of the same thing. (ZFC doesn't even mention logic internally, unlike Type Theory!) +To see how to use terms of type `ℕ`, i.e. induct on `ℕ`, +go to Quest1! - --} - diff --git a/Trinitarianism/README.md b/Trinitarianism/README.md index 33c4ef7..d1487f7 100644 --- a/Trinitarianism/README.md +++ b/Trinitarianism/README.md @@ -28,7 +28,7 @@ In category theory, types are objects and terms are generalised elements. - and / pairs / product - implication / functions / internal hom -# Dependent Types +## Dependent Types - predicate / type family / over category - substitution / substitution / pullback