trinit
This commit is contained in:
parent
3f7f1c6fcf
commit
0ccb79bd40
@ -4,7 +4,7 @@ open import Trinitarianism.Quest0Preamble
|
|||||||
private
|
private
|
||||||
postulate
|
postulate
|
||||||
u : Level
|
u : Level
|
||||||
A : Type u
|
|
||||||
|
|
||||||
{-
|
{-
|
||||||
There are three ways of looking at `A : Type u`.
|
There are three ways of looking at `A : Type u`.
|
||||||
@ -147,8 +147,12 @@ unlike Type Theory!)
|
|||||||
|
|
||||||
-}
|
-}
|
||||||
|
|
||||||
|
postulate
|
||||||
|
A : Type u
|
||||||
|
|
||||||
|
NNO : A → (A → A) → (ℕ → A)
|
||||||
|
NNO a s zero = a
|
||||||
|
NNO a s (suc n) = s (NNO a s n)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -127,8 +127,7 @@ We can see `ℕ` as a categorical notion:
|
|||||||
with `zero : ⊤ → ℕ` and `suc : ℕ → ℕ` such that
|
with `zero : ⊤ → ℕ` and `suc : ℕ → ℕ` such that
|
||||||
given any `⊤ → A → A` there exist a unique morphism `ℕ → A`
|
given any `⊤ → A → A` there exist a unique morphism `ℕ → A`
|
||||||
such that the diagram commutes:
|
such that the diagram commutes:
|
||||||
<img src="images/nno.png" alt="nno" width="200"/>
|
<img src="images/nno.png" alt="nno" width="400"/>
|
||||||
|
|
||||||
|
|
||||||
This has no interpretation as a proposition since
|
This has no interpretation as a proposition since
|
||||||
there are too many terms,
|
there are too many terms,
|
||||||
@ -137,8 +136,7 @@ between proofs of the same thing.
|
|||||||
(ZFC doesn't even mention logic internally,
|
(ZFC doesn't even mention logic internally,
|
||||||
unlike Type Theory!)
|
unlike Type Theory!)
|
||||||
|
|
||||||
|
To see how to use terms of type `ℕ`, i.e. induct on `ℕ`,
|
||||||
|
go to Quest1!
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-}
|
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ In category theory, types are objects and terms are generalised elements.
|
|||||||
- and / pairs / product
|
- and / pairs / product
|
||||||
- implication / functions / internal hom
|
- implication / functions / internal hom
|
||||||
|
|
||||||
# Dependent Types
|
## Dependent Types
|
||||||
|
|
||||||
- predicate / type family / over category
|
- predicate / type family / over category
|
||||||
- substitution / substitution / pullback
|
- substitution / substitution / pullback
|
||||||
|
Loading…
Reference in New Issue
Block a user