Added 1FundamentalGroup/Quest2Part0.md
This commit is contained in:
parent
7e1e1f2064
commit
0b24937e0c
@ -7,7 +7,7 @@ open import Cubical.Data.Int
|
||||
open import Cubical.Data.Empty
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.HLevels
|
||||
open import 1FundamentalGroup.Quest0 using ( Refl ; Refl≢loop )
|
||||
open import 1FundamentalGroup.Quest0Solutions using ( Refl ; Refl≢loop )
|
||||
|
||||
Ω : (A : Type) (a : A) → Type
|
||||
Ω A a = a ≡ a
|
||||
|
@ -77,6 +77,10 @@ Try giving it '`loop n times`' composed with `loop`.
|
||||
Then try to also define the map on the negative integers.
|
||||
You will need to invert paths using `sym`.
|
||||
|
||||
```agda
|
||||
sym : x ≡ y → y ≡ x
|
||||
```
|
||||
|
||||
<p>
|
||||
<details>
|
||||
<summary>Looking up definitions</summary>
|
||||
|
@ -1,8 +1,9 @@
|
||||
|
||||
# Homotopy Levels
|
||||
|
||||
The loop space can contain higher homotopical information that
|
||||
the fundamental group does not capture.
|
||||
For example, consider `S²`.
|
||||
|
||||
```agda
|
||||
data S² : Type where
|
||||
base : S²
|
||||
@ -32,7 +33,7 @@ So `base ≡ base` has non-trivial path structure.
|
||||
|
||||
<img src="images/S2.png"
|
||||
alt="S2"
|
||||
width="500"
|
||||
width="1000"
|
||||
class="center"/>
|
||||
|
||||
Let's be more precise about homotopical data :
|
||||
@ -81,6 +82,11 @@ In the cubical library we have the result
|
||||
isProp→isSet : (A : Type) → isProp A → isSet A
|
||||
```
|
||||
|
||||
which we will not prove.
|
||||
Assuming `¬isSetS¹`, use `isProp→isSet` to deduce `¬isPropS¹`.
|
||||
<!-- from now you should fill in the hypotheses of the proof yourself -->
|
||||
<!-- (put `h` before the `=` sign or use `C-c C-r`). -->
|
||||
|
||||
<p>
|
||||
<details>
|
||||
<summary>HLevel</summary>
|
||||
@ -90,27 +96,21 @@ Generalisation to HLevel and isHLevel n → isHLevel suc n??
|
||||
</details>
|
||||
</p>
|
||||
|
||||
|
||||
which we will not prove.
|
||||
Use `isProp→isSet` to conclude `¬isPropS¹` (using `¬isSetS¹`),
|
||||
from now you should fill in the hypotheses of the proof yourself
|
||||
(put `h` before the `=` sign or use `C-c C-r`).
|
||||
|
||||
Turning our attention to `¬isSetS¹`,
|
||||
again supposing `h : isSet S¹` -
|
||||
again given `h : isSet S¹` -
|
||||
a map continuously taking each pair `x y : A`
|
||||
to a point in `isProp (x ≡ y)`.
|
||||
We can apply `h` twice to the only point `base` available to us,
|
||||
obtaining a point of `isProp (base ≡ base)`.
|
||||
Can we map this into the empty space?
|
||||
Try mapping from this into the empty space.
|
||||
|
||||
<p>
|
||||
<details>
|
||||
<summary>Hint 0</summary>
|
||||
|
||||
We have already shown that `Refl ≡ loop` is the empty space.
|
||||
We have imported `Quest0` for you, so you can just quote the
|
||||
result from there.
|
||||
We have imported `Quest0Solutions.agda` for you,
|
||||
so you can just quote the result from there.
|
||||
|
||||
</details>
|
||||
</p>
|
||||
|
3
1FundamentalGroup/Quest1Part2.md
Normal file
3
1FundamentalGroup/Quest1Part2.md
Normal file
@ -0,0 +1,3 @@
|
||||
# Set Truncation and Higher Homotopy Groups
|
||||
|
||||
We've seen what it means for a space to be a "set".
|
19
1FundamentalGroup/Quest2Part0.md
Normal file
19
1FundamentalGroup/Quest2Part0.md
Normal file
@ -0,0 +1,19 @@
|
||||
# Comparison maps between `Ω S¹ base` and `ℤ`
|
||||
|
||||
In `Quest1` we have defined the map `loop_times : ℤ → Ω S¹ base`.
|
||||
Creating the inverse map is difficult without access to the entire circle.
|
||||
Similarly to how we used `doubleCover` to distinguish `refl` and `base`,
|
||||
the idea is to replace `Bool` with `ℤ`,
|
||||
allowing us to distinguish between all loops on `S¹`.
|
||||
|
||||
The plan is :
|
||||
|
||||
- Define a function `sucℤ : ℤ → ℤ` that increases every integer by one
|
||||
- Prove that `sucℤ` is an isomorphism by constructing
|
||||
an inverse map `predℤ : ℤ → ℤ`.
|
||||
- Turn `sucℤ` into a path `sucPath : ℤ ≡ ℤ` using `isoToPath`
|
||||
- Define `helix : S¹ → Type` by mapping `base` to `ℤ` and
|
||||
a generic point `loop i` to `sucPath i`.
|
||||
- Use `helix` and `endPt` to define the map `base ≡ x → helix x`
|
||||
on all `x : S¹`, in particular giving us `Ω S¹ base → ℤ`
|
||||
when applied to `base`.
|
BIN
_build/2.6.3/agda/1FundamentalGroup/Quest0Solutions.agdai
Normal file
BIN
_build/2.6.3/agda/1FundamentalGroup/Quest0Solutions.agdai
Normal file
Binary file not shown.
BIN
_build/2.6.3/agda/1FundamentalGroup/Quest1.agdai
Normal file
BIN
_build/2.6.3/agda/1FundamentalGroup/Quest1.agdai
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user