TheHoTTGame/0Trinitarianism/Quest4Solutions.agda
2021-10-24 22:42:28 +01:00

283 lines
8.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module 0Trinitarianism.Quest4Solutions where
open import Cubical.Foundations.Prelude using ( Level ; Type ; _≡_ ; J ; JRefl ; refl )
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_)
infixr 30 _∙_
infix 3 _∎
infixr 2 _≡⟨_⟩_
private
variable
u : Level
data Id {A : Type} : (x y : A) Type where
rfl : {x : A} Id x x
idSym : (A : Type) (x y : A) Id x y Id y x
idSym A x .x rfl = rfl
Sym : {A : Type} {x y : A} Id x y Id y x
Sym rfl = rfl
_*_ : {A : Type} {x y z : A} Id x y Id y z Id x z
rfl * q = q
_*0_ : {A : Type} {x y z : A} Id x y Id y z Id x z
p *0 rfl = p
_*1_ : {A : Type} {x y z : A} Id x y Id y z Id x z
rfl *1 rfl = rfl
------------Cong-------------------------
private
variable
A B : Type
w x y z : A
------------Groupoid Laws----------------
rfl* : (p : Id x y) Id (rfl * p) p
rfl* p = rfl
*rfl : (p : Id x y) Id (p * rfl) p
*rfl rfl = rfl
*Sym : (p : Id x y) Id (p * Sym p) rfl
*Sym rfl = rfl
Sym* : (p : Id x y) Id rfl (p * Sym p)
Sym* rfl = rfl
Assoc : (p : Id w x) (q : Id x y) (r : Id y z)
Id ((p * q) * r) (p * (q * r))
Assoc rfl q r = rfl
-------------Mapping Out----------------
outOfId : (M : (y : A) Id x y Type) M x rfl
{y : A} (p : Id x y) M y p
outOfId M h rfl = h
------------Path vs Id--------------------
Path→Id : x y Id x y
Path→Id {A} {x} = J (λ y p Id x y) rfl
Id→Path : Id x y x y
Id→Path rfl = refl
-----------Basics about paths--------------
Cong : (f : A B) Id x y Id (f x) (f y)
Cong f rfl = rfl
cong : (f : A B) (p : x y) f x f y
cong {x = x} f = J (λ y p f x f y) refl
cong' : (f : A B) (p : x y) f x f y
cong' f p = Id→Path (Cong f (Path→Id p))
------------Path vs Id---------------------
Path→IdRefl : Path→Id (refl {x = x}) rfl
Path→IdRefl {x = x} = JRefl (λ y p Id x y) rfl
Path≡Id : (x y) (Id x y)
Path≡Id {A} {x} {y} = isoToPath (iso Path→Id Id→Path rightInv leftInv) where
rightInv : section (Path→Id {A} {x} {y}) Id→Path
rightInv rfl = Path→IdRefl
leftInv : retract (Path→Id {A} {x} {y}) Id→Path
leftInv = J (λ y p Id→Path (Path→Id p) p) (cong (λ p Id→Path p) Path→IdRefl)
-----------Basics about Path Space-----------------
sym : {x y : A} x y y x
sym {A} {x} = J (λ y1 p y1 x) refl
symRefl : {x : A} sym {A} {x} {x} (refl) refl
symRefl {A} {x} = JRefl (λ y1 p y1 x) refl
Trans : {x y z : A} x y y z x z
Trans {x = x} {z = z} = J (λ y1 p y1 z x z) λ q q
_∙_ = Trans -- input \.
_≡⟨_⟩_ : (x : A) x y y z x z
_ ≡⟨ x≡y y≡z = x≡y y≡z
_∎ : (x : A) x x
_ = refl
TransRefl : {x y : A} Trans {A} {x} {x} {y} refl λ q q
TransRefl {x = x} {y = y} = JRefl ((λ y1 p y1 y x y)) λ q q
refl∙refl : {x : A} refl {_} {A} {x} refl refl
refl∙refl = cong (λ f f refl) TransRefl
∙refl : {x y : A} (p : x y) Trans p refl p
∙refl {A} {x} {y} = J (λ y p Trans p refl p) refl∙refl
refl∙ : {A : Type} {x y : A} (p : x y) refl p p
refl∙ = J (λ y p refl p p) refl∙refl
∙sym : {A : Type} {x y : A} (p : x y) p sym p refl
∙sym = J (λ y p p sym p refl)
(
refl sym refl
≡⟨ cong (λ p refl p) symRefl
refl refl
≡⟨ refl∙refl
refl
)
sym∙ : {A : Type} {x y : A} (p : x y) (sym p) p refl
sym∙ = J (λ y p (sym p) p refl)
(
(sym refl) refl
≡⟨ cong (λ p p refl) symRefl
refl refl
≡⟨ refl∙refl
refl
)
assoc : {A : Type} {w x : A} (p : w x) {y z : A} (q : x y) (r : y z)
(p q) r p (q r)
assoc {A} = J
-- casing on p
(λ x p {y z : A} (q : x y) (r : y z) (p q) r p (q r))
-- reduce to showing when p = refl
λ q r ((refl q) r)
≡⟨ cong (λ p' p' r) (refl∙ q)
(q r)
≡⟨ sym (refl∙ (q r))
(refl (q r))
------------------Transport---------------------
id : A A
id x = x
pathToFun : A B A B
pathToFun {A} = J (λ B p (A B)) id
pathToFunRefl : pathToFun (refl {x = A}) id
pathToFunRefl {A} = JRefl (λ B p (A B)) id
pathToFunReflx : pathToFun (refl {x = A}) x x
pathToFunReflx {x = x} = cong (λ f f x) pathToFunRefl
endPt : (B : A Type) (p : x y) B x B y
endPt {x = x} B = J (λ y p B x B y) id
endPtRefl : (B : A Type) endPt B (refl {x = x}) id
endPtRefl {x = x} B = JRefl ((λ y p B x B y)) id
endPt' : (B : A Type) (p : x y) B x B y
endPt' B p = pathToFun (Cubical.Foundations.Prelude.cong B p )
--------------funExt---------------------
--------------Path on Products-----------
data _×_ (A B : Type) : Type where
_,_ : A B A × B
Id× : {A B : Type} (a0 a1 : A) (b0 b1 : B)
(Id {A × B} ( a0 , b0 ) ( a1 , b1 )) (Id a0 a1 × Id b0 b1)
Id× {A} {B} a0 a1 b0 b1 = isoToPath (iso fun inv rightInv leftInv) where
fun : Id {A = A × B} ( a0 , b0 ) ( a1 , b1 ) Id a0 a1 × Id b0 b1
fun rfl = rfl , rfl
inv : Id a0 a1 × Id b0 b1 Id {A = A × B} ( a0 , b0 ) ( a1 , b1 )
inv (rfl , rfl) = rfl
rightInv : section fun inv
rightInv (rfl , rfl) = refl
leftInv : retract fun inv
leftInv rfl = refl
fst : A × B A
fst (a , b) = a
snd : A × B B
snd (a , b) = b
Path× : {A B : Type} (x y : A × B) (x y) ((fst x fst y) × (snd x snd y))
Path× {A} {B} (a0 , b0) (a1 , b1) = isoToPath (iso fun (inv a0 a1 b0 b1) rightInv leftinv) where
fun : {x y : A × B} x y (fst x fst y) × (snd x snd y)
fun {x} {y} = J (λ y p (fst x fst y) × (snd x snd y)) (refl , refl)
funRefl : (x : A × B) fun (refl {x = x}) ( refl , refl )
funRefl x = JRefl {_} {A × B} {x}
((λ y p (fst x fst y) × (snd x snd y))) ( refl , refl )
inv : (a0 a1 : A) (b0 b1 : B) (a0 a1) × (b0 b1)
_≡_ {A = A × B} ( a0 , b0 ) ( a1 , b1 )
inv a0 a1 b0 b1 (p , q) =
J -- first induct on p
(λ y p _≡_ {A = A × B} ( a0 , b0 ) ( y , b1 ))
(
J -- then induct on q
(λ y q _≡_ {A = A × B} ( a0 , b0 ) ( a0 , y ))
refl
q
) p
invRefl : (a : A) (b : B) inv a a b b (refl , refl) refl
invRefl a b =
inv a a b b (refl , refl)
≡⟨ JRefl (λ y p (a , b) (y , b)) (J (λ y q (a , b) (a , y)) refl refl)
J (λ y q _≡_ {A = A × B} ( a , b ) ( a , y )) refl refl
≡⟨ JRefl ((λ y q _≡_ {A = A × B} ( a , b ) ( a , y ))) refl
refl
Inv : (x y : A × B) (fst x fst y) × (snd x snd y) x y
Inv (a0 , b0) (a1 , b1) = inv a0 a1 b0 b1
InvRefl : {x : A × B} Inv x x (refl , refl) refl {x = x}
InvRefl {a , b} = invRefl a b
rightInv : section fun (inv a0 a1 b0 b1)
rightInv (p , q) =
J -- first induct on p
(λ y p fun (inv a0 y b0 b1 (p , q)) (p , q))
(
J -- then induct on q
(λ y q fun (inv a0 a0 b0 y (refl , q)) (refl , q))
(
fun (inv a0 a0 b0 b0 (refl , refl))
≡⟨ cong fun (invRefl a0 b0)
fun (refl {x = (a0 , b0)})
≡⟨ funRefl (a0 , b0)
(refl , refl) )
q)
p
leftInv : {x y : A × B} retract fun (Inv x y)
leftInv {x} = J (λ y p Inv x y (fun p) p)
(
Inv x x (fun {x = x} refl)
≡⟨ cong (Inv x x) (funRefl x)
Inv x x (refl , refl)
≡⟨ InvRefl
refl )
leftinv : {x y : A × B} retract fun (inv (fst x) (fst y) (snd x) (snd y))
leftinv {a0 , b0} {a1 , b1} = leftInv