43 lines
967 B
Agda
43 lines
967 B
Agda
-- ignore
|
||
module 1FundamentalGroup.Quest2 where
|
||
open import 1FundamentalGroup.Preambles.P2
|
||
|
||
data _⊔_ (A B : Type) : Type where
|
||
|
||
inl : A → A ⊔ B
|
||
inr : B → A ⊔ B
|
||
{-
|
||
ℤ≡ℕ⊔ℕ : ℤ ≡ ℕ ⊔ ℕ
|
||
ℤ≡ℕ⊔ℕ = {!!}
|
||
|
||
∙refl : {A : Type} {x y : A} (p : x ≡ y) → p ∙ refl ≡ p
|
||
∙refl = {!!}
|
||
|
||
refl∙ : {A : Type} {x y : A} (p : x ≡ y) → refl ∙ p ≡ p
|
||
refl∙ = {!!}
|
||
|
||
∙sym : {A : Type} {x y : A} (p : x ≡ y) → p ∙ sym p ≡ refl
|
||
∙sym = {!!}
|
||
|
||
sym∙ : {A : Type} {x y : A} (p : x ≡ y) → (sym p) ∙ p ≡ refl
|
||
sym∙ = {!!}
|
||
|
||
assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z)
|
||
→ (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)
|
||
assoc {A} = {!!}
|
||
-}
|
||
|
||
{-
|
||
|
||
Your definition of ⊔NoConfusion goes here.
|
||
|
||
Your definition of Path≡⊔NoConfusion goes here.
|
||
|
||
Your definition of isProp⊔NoConfusion goes here.
|
||
|
||
Your definition of isSet⊔ goes here.
|
||
|
||
Your definition of isSetℤ goes here.
|
||
|
||
-}
|