TheHoTTGame/1FundamentalGroup/Quest2Solutions.agda
2021-10-07 22:57:21 +01:00

170 lines
6.2 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- ignore
module 1FundamentalGroup.Quest2Solutions where
open import 1FundamentalGroup.Preambles.P2
data _⊔_ (A B : Type) : Type where
inl : A A B
inr : B A B
ℤ≡ℕ⊔ℕ :
ℤ≡ℕ⊔ℕ = isoToPath (iso fun inv rightInv leftInv) where
fun :
fun (pos n) = inl n
fun (negsuc n) = inr n
inv :
inv (inl n) = pos n
inv (inr n) = negsuc n
rightInv : section fun inv
rightInv (inl n) = refl
rightInv (inr n) = refl
leftInv : retract fun inv
leftInv (pos n) = refl
leftInv (negsuc n) = refl
∙refl : {A : Type} {x y : A} (p : x y) p refl p
∙refl = J (λ y p p refl p) refl∙refl
refl∙ : {A : Type} {x y : A} (p : x y) refl p p
refl∙ = J (λ y p refl p p) refl∙refl
∙sym : {A : Type} {x y : A} (p : x y) p sym p refl
∙sym = J (λ y p p sym p refl)
(
refl sym refl
≡⟨ cong (λ p refl p) symRefl
refl refl
≡⟨ refl∙refl
refl )
sym∙ : {A : Type} {x y : A} (p : x y) (sym p) p refl
sym∙ = J (λ y p (sym p) p refl)
(
(sym refl) refl
≡⟨ cong (λ p p refl) symRefl
refl refl
≡⟨ refl∙refl
refl )
assoc : {A : Type} {w x : A} (p : w x) {y z : A} (q : x y) (r : y z)
(p q) r p (q r)
assoc {A} = J
-- casing on p
(λ x p {y z : A} (q : x y) (r : y z) (p q) r p (q r))
-- reduce to showing when p = refl
λ q r (refl q) r
≡⟨ cong (λ p' p' r) (refl∙ q)
q r
≡⟨ sym (refl∙ (q r))
refl q r
private
variable
A B : Type
isProp : isProp
isProp tt tt = refl
isProp⊥ : isProp
isProp⊥ ()
⊔NoConfusion : A B A B Type
⊔NoConfusion (inl x) (inl y) = x y -- Path A x y
⊔NoConfusion (inl x) (inr y) =
⊔NoConfusion (inr x) (inl y) =
⊔NoConfusion (inr x) (inr y) = x y -- Path B x y
isSet⊔NoConfusion : isSet A isSet B
(x y : A B) isProp (⊔NoConfusion x y)
isSet⊔NoConfusion hA hB (inl x) (inl y) = hA x y
isSet⊔NoConfusion hA hB (inl x) (inr y) = isProp⊥
isSet⊔NoConfusion hA hB (inr x) (inl y) = isProp⊥
isSet⊔NoConfusion hA hB (inr x) (inr y) = hB x y
⊔NoConfusionSelf : (x : A B) ⊔NoConfusion x x
⊔NoConfusionSelf (inl x) = refl
⊔NoConfusionSelf (inr x) = refl
Path≅⊔NoConfusion' : (x y : A B) (x y) ⊔NoConfusion x y
Path≅⊔NoConfusion' x y = iso (fun _ _) ({!!}) ({!!}) ({!!}) where
-- if you case on x and y you would have to show that inl and inr are injective
-- J avoids this, but leads to needing J and JRefl for showing section and retract
fun : (x y : A B) (x y) ⊔NoConfusion x y
fun x y = J (λ y₂ x₂ ⊔NoConfusion x y₂) (⊔NoConfusionSelf x)
inv : (x y : A B) ⊔NoConfusion x y x y
inv (inl x) (inl y) p = cong inl p
inv (inr x) (inr y) p = cong inr p
rightInv : (x y : A B) section (fun x y) (inv x y)
rightInv {A} {B} (inl x) (inl x₁) = J ((λ y' p fun {A} {B} (inl x) (inl y') (inv (inl x) (inl y') p) p)) {!!}
rightInv {A} {B} (inl x) (inr x₁) = {!!}
rightInv {A} {B} (inr x) y = {!!}
Path≅⊔NoConfusion : (x y : A B) (x y) ⊔NoConfusion x y
Path≅⊔NoConfusion x y = iso (fun _ _) (inv _ _) (rightInv _ _) (leftInv _ _) where
-- if you case on x and y you would have to show that inl and inr are injective
-- J avoids this, but leads to needing J and JRefl for showing section and retract
fun : (x y : A B) (x y) ⊔NoConfusion x y
fun x y = J (λ y' p ⊔NoConfusion x y') (⊔NoConfusionSelf _)
inv : (x y : A B) ⊔NoConfusion x y x y
inv (inl x) (inl y) p = cong inl p
inv (inr x) (inr y) p = cong inr p
rightInv : (x y : A B) section (fun x y) (inv x y)
rightInv {A} {B} (inl x) (inl y) p = J (λ y' p fun {A} {B} (inl x) (inl y') (inv (inl x) (inl y') p) p)
(
fun {A} {B} (inl x) (inl x) refl
≡⟨ JRefl {x = inl x} ((λ y' p ⊔NoConfusion {A} {B} (inl x) y')) _
-- uses how J computes on refl
refl
) p
rightInv {A} {B} (inr x) (inr y) p = J (λ y' p fun {A} {B} (inr x) (inr y') (inv (inr x) (inr y') p) p)
(
fun {A} {B} (inr x) (inr x) refl
≡⟨ JRefl {x = inr x} ((λ y' p ⊔NoConfusion {A} {B} (inr x) y')) _
-- uses how J computes on refl
refl
) p
leftInv : (x y : A B) retract (fun x y) (inv x y)
leftInv x y = J (λ y' p inv x y' (fun x y' p) p)
(
(inv x x (fun x x refl))
≡⟨ cong (inv x x) (JRefl ((λ y' p ⊔NoConfusion x y')) _)
inv x x (⊔NoConfusionSelf x)
≡⟨ lem x
refl
) where
lem : (x : A B) inv x x (⊔NoConfusionSelf x) refl
lem (inl x) = refl
lem (inr x) = refl
Path≡⊔NoConfusion : (x y : A B) (x y) ⊔NoConfusion x y
Path≡⊔NoConfusion x y = isoToPath (Path≅⊔NoConfusion x y)
isSet⊔ : {A B : Type} isSet A isSet B isSet (A B)
isSet⊔ hA hB x y = pathToFun (cong isProp (sym (Path≡⊔NoConfusion x y)))
(isSet⊔NoConfusion hA hB x y)
isSet⊔' : {A B : Type} isSet A isSet B isSet (A B)
isSet⊔' hA hB x y = endPt (λ A isProp A) (sym (Path≡⊔NoConfusion x y))
(isSet⊔NoConfusion hA hB x y)
isSet : isSet
isSet = pathToFun (cong isSet (sym ℤ≡ℕ⊔ℕ)) (isSet⊔ isSet isSet)
isSet' : isSet
isSet' = endPt (λ A isSet A) (sym ℤ≡ℕ⊔ℕ) (isSet⊔ isSet isSet)