module 0Trinitarianism.Quest5Solutions where open import 0Trinitarianism.Preambles.P5 PathD : {A0 A1 : Type} (A : A0 ≡ A1) (x : A0) (y : A1) → Type PathD A x y = pathToFun A x ≡ y syntax PathD A x y = x ≡ y along A outOfS¹P : (B : S¹ → Type) (b : B base) → PathP (λ i → B (loop i)) b b → (x : S¹) → B x outOfS¹P B b p base = b outOfS¹P B b p (loop i) = p i outOfS¹D : (B : S¹ → Type) (b : B base) → PathD (λ i → B (loop i)) b b → (x : S¹) → B x outOfS¹D B b p x = outOfS¹P B b (_≅_.inv (PathPIsoPathD (λ i → B (loop i)) b b) p) x example : (x : S¹) → doubleCover x → doubleCover x example base = Flip example (loop i) = p i where lem : (x : Bool) → pathToFun (λ i → flipPath i → flipPath i) Flip x ≡ Flip x lem false = refl lem true = refl p : PathP (λ i → flipPath i → flipPath i) Flip Flip p = _≅_.inv (PathPIsoPathD (λ i → flipPath i → flipPath i) Flip Flip) (funExt lem) -- repeating the example but using our API example' : (x : S¹) → doubleCover x → doubleCover x example' = outOfS¹D (λ x → doubleCover x → doubleCover x) Flip (funExt lem) where lem : (x : Bool) → pathToFun (λ i → flipPath i → flipPath i) Flip x ≡ Flip x lem false = refl lem true = refl outOfS¹DBase : (B : S¹ → Type) (b : B base) (p : b ≡ b along (λ i → B (loop i)))→ outOfS¹D B b p base ≡ b outOfS¹DBase B b p = refl pathToFun→ : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)) pathToFun→ {A0} {A1} {B0} {B1} {A} {B} f = J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))) ( J (λ B1 B → pathToFun (λ i → A0 → B i) f ≡ λ a → pathToFun B (f (pathToFun (sym refl) a))) ( pathToFun refl f ≡⟨ pathToFunReflx f ⟩ f ≡⟨ funExt (λ a → f a ≡⟨ cong f (sym (pathToFunReflx a)) ⟩ f (pathToFun refl a) ≡⟨ cong (λ p → f (pathToFun p a)) (sym symRefl) ⟩ f (pathToFun (sym refl) a) ≡⟨ sym (pathToFunReflx (f (pathToFun (sym refl) a))) ⟩ pathToFun refl (f (pathToFun (sym refl) a)) ∎ ) ⟩ (λ a → pathToFun refl (f (pathToFun (sym refl) a))) ∎ ) B ) A