module 0Trinitarianism.Quest4Solutions where open import Cubical.Foundations.Prelude using ( Level ; Type ; _≡_ ; J ; JRefl ; refl ) open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) infixr 30 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ private variable u : Level data Id {A : Type u} : (x y : A) → Type u where rfl : {x : A} → Id x x idSym : (A : Type) (x y : A) → Id x y → Id y x idSym A x .x rfl = rfl Sym : {A : Type} {x y : A} → Id x y → Id y x Sym rfl = rfl _*_ : {A : Type} {x y z : A} → Id x y → Id y z → Id x z rfl * q = q _*0_ : {A : Type} {x y z : A} → Id x y → Id y z → Id x z p *0 rfl = p _*1_ : {A : Type} {x y z : A} → Id x y → Id y z → Id x z rfl *1 rfl = rfl data _×_ (A B : Type) : Type where _,_ : A → B → A × B -- id× : {A B : Type} (a0 a1 : A) (b0 b1 : B) → -- (Id a0 a1 × Id b0 b1) ≅ Id {A × B} ( a0 , b0 ) ( a1 , b1 ) -- id× {A} {B} a0 a1 b0 b1 = iso fun inv rightInv leftInv where -- fun : Id a0 a1 × Id b0 b1 → Id {A × B} ( a0 , b0 ) ( a1 , b1 ) -- fun (rfl , rfl) = rfl -- inv : Id {A × B} ( a0 , b0 ) ( a1 , b1 ) → Id a0 a1 × Id b0 b1 -- inv rfl = rfl , rfl -- rightInv : section fun inv -- rightInv rfl = refl -- leftInv : retract fun inv -- leftInv (rfl , rfl) = refl ------------Cong------------------------- private variable A B : Type w x y z : A ------------Groupoid Laws---------------- rfl* : (p : Id x y) → Id (rfl * p) p rfl* p = rfl *rfl : (p : Id x y) → Id (p * rfl) p *rfl rfl = rfl *Sym : (p : Id x y) → Id (p * Sym p) rfl *Sym rfl = rfl Sym* : (p : Id x y) → Id rfl (p * Sym p) Sym* rfl = rfl Assoc : (p : Id w x) (q : Id x y) (r : Id y z) → Id ((p * q) * r) (p * (q * r)) Assoc rfl q r = rfl -------------Mapping Out---------------- thing = JRefl outOfId : (M : (y : A) → Id x y → Type) → M x rfl → {y : A} (p : Id x y) → M y p outOfId M h rfl = h ------------Path vs Id-------------------- Path→Id : x ≡ y → Id x y Path→Id {A} {x} = J (λ y p → Id x y) rfl Id→Path : Id x y → x ≡ y Id→Path rfl = refl -----------Basics about paths-------------- Cong : (f : A → B) → Id x y → Id (f x) (f y) Cong f rfl = rfl cong : (f : A → B) (p : x ≡ y) → f x ≡ f y cong {x = x} f = J (λ y p → f x ≡ f y) refl cong' : (f : A → B) (p : x ≡ y) → f x ≡ f y cong' f p = Id→Path (Cong f (Path→Id p)) ------------Path vs Id--------------------- Path→IdRefl : Path→Id (refl {x = x}) ≡ rfl Path→IdRefl {x = x} = JRefl (λ y p → Id x y) rfl Path≡Id : (x ≡ y) ≡ (Id x y) Path≡Id {A} {x} {y} = isoToPath (iso Path→Id Id→Path rightInv leftInv) where rightInv : section (Path→Id {A} {x} {y}) Id→Path rightInv rfl = Path→IdRefl leftInv : retract (Path→Id {A} {x} {y}) Id→Path leftInv = J (λ y p → Id→Path (Path→Id p) ≡ p) (cong (λ p → Id→Path p) Path→IdRefl) -- leftInv : retract (Path→Id {A} {x} {y}) Id→Path -- leftInv = J (λ y p → Id→Path (Path→Id p) ≡ p) -- ( -- Id→Path (Path→Id refl) -- ≡⟨ cong (λ p → Id→Path p) Path→IdRefl ⟩ -- Id→Path rfl -- ≡⟨ refl ⟩ -- refl ∎ -- ) -----------Basics about Path Space----------------- sym : {x y : A} → x ≡ y → y ≡ x sym {A} {x} = J (λ y1 p → y1 ≡ x) refl symRefl : {x : A} → sym {A} {x} {x} (refl) ≡ refl symRefl {A} {x} = JRefl (λ y1 p → y1 ≡ x) refl Trans : {x y z : A} → x ≡ y → y ≡ z → x ≡ z Trans {x = x} {z = z} = J (λ y1 p → y1 ≡ z → x ≡ z) λ q → q _∙_ = Trans -- input \. _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z _∎ : (x : A) → x ≡ x _ ∎ = refl TransRefl : {x y : A} → Trans {A} {x} {x} {y} refl ≡ λ q → q TransRefl {x = x} {y = y} = JRefl ((λ y1 p → y1 ≡ y → x ≡ y)) λ q → q refl∙refl : {x : A} → refl {_} {A} {x} ∙ refl ≡ refl refl∙refl = cong (λ f → f refl) TransRefl ∙refl : {x y : A} (p : x ≡ y) → Trans p refl ≡ p ∙refl {A} {x} {y} = J (λ y p → Trans p refl ≡ p) refl∙refl refl∙ : {A : Type} {x y : A} (p : x ≡ y) → refl ∙ p ≡ p refl∙ = J (λ y p → refl ∙ p ≡ p) refl∙refl ∙sym : {A : Type} {x y : A} (p : x ≡ y) → p ∙ sym p ≡ refl ∙sym = J (λ y p → p ∙ sym p ≡ refl) ( refl ∙ sym refl ≡⟨ cong (λ p → refl ∙ p) symRefl ⟩ refl ∙ refl ≡⟨ refl∙refl ⟩ refl ∎ ) sym∙ : {A : Type} {x y : A} (p : x ≡ y) → (sym p) ∙ p ≡ refl sym∙ = J (λ y p → (sym p) ∙ p ≡ refl) ( (sym refl) ∙ refl ≡⟨ cong (λ p → p ∙ refl) symRefl ⟩ refl ∙ refl ≡⟨ refl∙refl ⟩ refl ∎ ) assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r) assoc {A} = J -- casing on p (λ x p → {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)) -- reduce to showing when p = refl λ q r → ((refl ∙ q) ∙ r) ≡⟨ cong (λ p' → p' ∙ r) (refl∙ q) ⟩ (q ∙ r) ≡⟨ sym (refl∙ (q ∙ r)) ⟩ (refl ∙ (q ∙ r)) ∎