-- ignore module 1FundamentalGroup.Quest2Solutions where open import 1FundamentalGroup.Preambles.P2 isSet→LoopSpace≡⊤ : {A : Type} (x : A) → isSet A → (x ≡ x) ≡ ⊤ isSet→LoopSpace≡⊤ x h = isoToPath (iso (λ p → tt) inv rightInv (λ p → h x x refl p)) where inv : ⊤ → x ≡ x inv tt = refl rightInv : section (λ p → tt) inv rightInv tt = refl data _⊔_ (A B : Type) : Type where inl : A → A ⊔ B inr : B → A ⊔ B ℤ≡ℕ⊔ℕ : ℤ ≡ ℕ ⊔ ℕ ℤ≡ℕ⊔ℕ = isoToPath (iso fun inv rightInv leftInv) where fun : ℤ → ℕ ⊔ ℕ fun (pos n) = inl n fun (negsuc n) = inr n inv : ℕ ⊔ ℕ → ℤ inv (inl n) = pos n inv (inr n) = negsuc n rightInv : section fun inv rightInv (inl n) = refl rightInv (inr n) = refl leftInv : retract fun inv leftInv (pos n) = refl leftInv (negsuc n) = refl private variable A B : Type isProp⊤ : isProp ⊤ isProp⊤ tt tt = refl isProp⊥ : isProp ⊥ isProp⊥ () ⊔NoConfusion : A ⊔ B → A ⊔ B → Type ⊔NoConfusion (inl x) (inl y) = x ≡ y -- Path A x y ⊔NoConfusion (inl x) (inr y) = ⊥ ⊔NoConfusion (inr x) (inl y) = ⊥ ⊔NoConfusion (inr x) (inr y) = x ≡ y -- Path B x y isSet⊔NoConfusion : isSet A → isSet B → (x y : A ⊔ B) → isProp (⊔NoConfusion x y) isSet⊔NoConfusion hA hB (inl x) (inl y) = hA x y isSet⊔NoConfusion hA hB (inl x) (inr y) = isProp⊥ isSet⊔NoConfusion hA hB (inr x) (inl y) = isProp⊥ isSet⊔NoConfusion hA hB (inr x) (inr y) = hB x y ⊔NoConfusionSelf : (x : A ⊔ B) → ⊔NoConfusion x x ⊔NoConfusionSelf (inl x) = refl ⊔NoConfusionSelf (inr x) = refl disjoint : (x : A) (y : B) → inl x ≡ inr y → ⊥ disjoint x y p = endPt bundle p tt where bundle : A ⊔ B → Type bundle (inl x) = ⊤ bundle (inr x) = ⊥ Path≅⊔NoConfusion : (x y : A ⊔ B) → (x ≡ y) ≅ ⊔NoConfusion x y Path≅⊔NoConfusion x y = iso (fun _ _) (inv _ _) (rightInv _ _) (leftInv _ _) where -- if you case on x and y you would have to show that inl and inr are injective -- J avoids this, but leads to needing J and JRefl for showing section and retract fun : (x y : A ⊔ B) → (x ≡ y) → ⊔NoConfusion x y fun x y = J (λ y' p → ⊔NoConfusion x y') (⊔NoConfusionSelf _) inv : (x y : A ⊔ B) → ⊔NoConfusion x y → x ≡ y inv (inl x) (inl y) p = cong inl p inv (inr x) (inr y) p = cong inr p rightInv : (x y : A ⊔ B) → section (fun x y) (inv x y) rightInv {A} {B} (inl x) (inl y) p = J (λ y' p → fun {A} {B} (inl x) (inl y') (inv (inl x) (inl y') p) ≡ p) ( fun {A} {B} (inl x) (inl x) refl ≡⟨ JRefl {x = inl x} ((λ y' p → ⊔NoConfusion {A} {B} (inl x) y')) _ ⟩ -- uses how J computes on refl refl ∎ ) p rightInv {A} {B} (inr x) (inr y) p = J (λ y' p → fun {A} {B} (inr x) (inr y') (inv (inr x) (inr y') p) ≡ p) ( fun {A} {B} (inr x) (inr x) refl ≡⟨ JRefl {x = inr x} ((λ y' p → ⊔NoConfusion {A} {B} (inr x) y')) _ ⟩ -- uses how J computes on refl refl ∎ ) p leftInv : (x y : A ⊔ B) → retract (fun x y) (inv x y) leftInv x y = J (λ y' p → inv x y' (fun x y' p) ≡ p) ( (inv x x (fun x x refl)) ≡⟨ cong (inv x x) (JRefl ((λ y' p → ⊔NoConfusion x y')) _) ⟩ inv x x (⊔NoConfusionSelf x) ≡⟨ lem x ⟩ refl ∎ ) where lem : (x : A ⊔ B) → inv x x (⊔NoConfusionSelf x) ≡ refl lem (inl x) = refl lem (inr x) = refl Path≡⊔NoConfusion : (x y : A ⊔ B) → (x ≡ y) ≡ ⊔NoConfusion x y Path≡⊔NoConfusion x y = isoToPath (Path≅⊔NoConfusion x y) isSet⊔ : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B) isSet⊔ hA hB x y = pathToFun (cong isProp (sym (Path≡⊔NoConfusion x y))) (isSet⊔NoConfusion hA hB x y) isSet⊔' : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B) isSet⊔' hA hB x y = endPt (λ A → isProp A) (sym (Path≡⊔NoConfusion x y)) (isSet⊔NoConfusion hA hB x y) isSetℤ : isSet ℤ isSetℤ = pathToFun (cong isSet (sym ℤ≡ℕ⊔ℕ)) (isSet⊔ isSetℕ isSetℕ) isSetℤ' : isSet ℤ isSetℤ' = endPt (λ A → isSet A) (sym ℤ≡ℕ⊔ℕ) (isSet⊔ isSetℕ isSetℕ)