-- ignore module 1FundamentalGroup.Quest1Solutions where open import 1FundamentalGroup.Preambles.P1 Ω : (A : Type) (a : A) → Type Ω A a = a ≡ a loop_times : ℤ → Ω S¹ base loop pos zero times = refl loop pos (suc n) times = loop pos n times ∙ loop loop negsuc zero times = sym loop loop negsuc (suc n) times = loop negsuc n times ∙ sym loop sucℤ : ℤ → ℤ sucℤ (pos n) = pos (suc n) sucℤ (negsuc zero) = pos zero sucℤ (negsuc (suc n)) = negsuc n predℤ : ℤ → ℤ predℤ (pos zero) = negsuc zero predℤ (pos (suc n)) = pos n predℤ (negsuc n) = negsuc (suc n) sucℤIso : ℤ ≅ ℤ sucℤIso = iso sucℤ predℤ s r where s : section sucℤ predℤ s (pos zero) = refl s (pos (suc n)) = refl s (negsuc zero) = refl s (negsuc (suc n)) = refl r : retract sucℤ predℤ r (pos zero) = refl r (pos (suc n)) = refl r (negsuc zero) = refl r (negsuc (suc n)) = refl sucℤPath : ℤ ≡ ℤ sucℤPath = isoToPath sucℤIso helix : S¹ → Type helix base = ℤ helix (loop i) = sucℤPath i windingNumberBase : base ≡ base → ℤ windingNumberBase p = endPt helix p (pos zero) windingNumber : (x : S¹) → base ≡ x → helix x windingNumber x p = endPt helix p (pos zero)