module 1FundamentalGroup.Quest3Solutions where open import Cubical.HITs.S1 using ( S¹ ; base ; loop ) open import 1FundamentalGroup.Quest1Solutions open import Cubical.Foundations.Prelude renaming (transport to pathToFun ; transportRefl to pathToFunRefl) open import Cubical.Foundations.GroupoidLaws renaming (lCancel to sym∙ ; rCancel to ∙sym ; lUnit to Refl∙ ; rUnit to ∙Refl) open import Cubical.Foundations.Path open import 0Trinitarianism.Quest5Solutions open import Cubical.Data.Int using (ℤ) open import Cubical.Data.Nat pathToFun→ : {A0 A1 B0 B1 : Type} (A : A0 ≡ A1) (B : B0 ≡ B1) (f : A0 → B0) → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)) pathToFun→ A B f = J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))) refl A {- private variable ℓ : Level transport→ : {A B : I → Type ℓ} (f : A i0 → B i0) (x : A i0) → transport (λ i → A i → B i) f (transport (λ i → A i) x) ≡ transport (λ i → B i) (f x) transport→ {A = A} {B = B} f x = J (λ A1 A → transport (λ i → A i → B i) f (transport (λ i → A i) x) ≡ transport (λ i → B i) (f x)) (J (λ B1 B → transport (λ i → A i0 → B i) f (transport (λ i → A i0) x) ≡ transport (λ i → B i) (f x)) ( transport (λ i → A i0 → B i0) f (transport (λ i → A i0) x) ≡⟨ cong (transport (λ i → A i0 → B i0) f) (transportRefl x) ⟩ transport (λ i → A i0 → B i0) f x ≡⟨ cong (λ g → g x) (transportRefl f) ⟩ f x ≡⟨ sym (transportRefl (f x)) ⟩ transport (λ i → B i0) (f x) ∎ ) λ i → B i ) λ i → A i -- J (λ A1 A → transport (λ i → A i → B i) f ≡ λ a1 → transport B (f (transport (sym A) a1))) -- (funExt (λ a1 → refl)) A transport→' : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) → transport (λ i → A i → B i) f ≡ λ a1 → transport B (f (transport (sym A) a1)) transport→' {A = A} {B = B} f = J (λ A1 A → transport (λ i → A i → B i) f ≡ λ a1 → transport B (f (transport (sym A) a1))) refl A pathToFun→ : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)) pathToFun→ {A = A} {B = B} f = J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))) refl A pathToFun→' : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)) pathToFun→' {A0} {A1} {B0} {B1} {A} {B} f = J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))) ( J (λ B1 B → pathToFun (λ i → A0 → B i) f ≡ λ a → pathToFun B (f (pathToFun refl a))) ( funExt λ a → pathToFun refl f a ≡⟨ cong (λ g → g a) (pathToFunRefl f) ⟩ f a ≡⟨ sym (pathToFunRefl (f a)) ⟩ pathToFun refl (f a) ≡⟨ cong (λ x → pathToFun refl (f x)) (sym (pathToFunRefl a)) ⟩ pathToFun refl (f (pathToFun refl a)) ∎ ) B ) A -} open ℤ loopSucℤtimes : (n : ℤ) → loop n times ∙ loop ≡ loop sucℤ n times loopSucℤtimes (pos n) = refl loopSucℤtimes (negsuc zero) = sym∙ loop loopSucℤtimes (negsuc (suc n)) = (loop (negsuc n) times ∙ sym loop) ∙ loop ≡⟨ sym (assoc _ _ _) ⟩ loop (negsuc n) times ∙ (sym loop ∙ loop) ≡⟨ cong (λ p → loop (negsuc n) times ∙ p) (sym∙ _) ⟩ loop (negsuc n) times ∙ refl ≡⟨ sym (∙Refl _) ⟩ loop (negsuc n) times ∎ sucℤPredℤ : (n : ℤ) → sucℤ (predℤ n) ≡ n sucℤPredℤ (pos zero) = refl sucℤPredℤ (pos (suc n)) = refl sucℤPredℤ (negsuc n) = refl pathToFunPathFibration : {A : Type} {x y z : A} (q : x ≡ y) (p : y ≡ z) → pathToFun (λ i → x ≡ p i) q ≡ q ∙ p pathToFunPathFibration {A} {x} {y} q = J (λ z p → pathToFun (λ i → x ≡ p i) q ≡ q ∙ p) ( pathToFun refl q ≡⟨ pathToFunRefl q ⟩ q ≡⟨ ∙Refl q ⟩ q ∙ refl ∎ ) rewind : (x : S¹) → helix x → base ≡ x rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times ( pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times ≡⟨ pathToFun→ sucℤPath (λ i → base ≡ loop i) loop_times ⟩ -- how pathToFun interacts with → (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (pathToFun (sym sucℤPath) n))) ≡⟨ refl ⟩ -- sucℤPath is just taking successor, and so its inverse is definitionally taking predecessor (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (predℤ n))) ≡⟨ funExt (λ n → pathToFunPathFibration _ _) ⟩ -- how pathToFun interacts with the "path fibration" (λ n → (loop (predℤ n) times) ∙ loop) ≡⟨ funExt (λ n → loop predℤ n times ∙ loop ≡⟨ loopSucℤtimes (predℤ n) ⟩ loop (sucℤ (predℤ n)) times ≡⟨ cong loop_times (sucℤPredℤ n) ⟩ loop n times ∎) ⟩ loop_times ∎ )