module 1FundamentalGroup.Preambles.P3 where open import Cubical.Foundations.Prelude public renaming (transport to pathToFun ; transportRefl to pathToFunRefl ; subst to endPt) public open import Cubical.Foundations.Isomorphism public open import Cubical.Foundations.GroupoidLaws renaming (lCancel to sym∙ ; rCancel to ∙sym ; lUnit to Refl∙ ; rUnit to ∙Refl) public open import Cubical.Foundations.Path public open import Cubical.Data.Int using (ℤ ; isSetℤ) public open import Cubical.Data.Nat public open import Cubical.HITs.S1 using ( S¹ ; base ; loop ) public open import 0Trinitarianism.Quest5Solutions public open import 1FundamentalGroup.Quest1Solutions public open ℤ public endPtRefl : {A : Type} {x : A} (B : A → Type) → endPt B (refl {x = x}) ≡ λ b → b endPtRefl {x = x} B = funExt (λ b → substRefl {B = B} b)