-- ignore module 1FundamentalGroup.Quest0Solutions where open import 1FundamentalGroup.Preambles.P0 Refl : base ≡ base Refl = λ i → base Flip : Bool → Bool Flip false = true Flip true = false -- notice we used `refl` instead of `λ i → false`, -- more on `refl` in Quest1 flipIso : Bool ≅ Bool flipIso = iso Flip Flip rightInv leftInv where rightInv : section Flip Flip rightInv false = refl rightInv true = refl leftInv : retract Flip Flip leftInv false = refl leftInv true = refl flipPath : Bool ≡ Bool flipPath = isoToPath flipIso doubleCover : S¹ → Type doubleCover base = Bool doubleCover (loop i) = flipPath i endPtOfTrue : (p : base ≡ base) → doubleCover base endPtOfTrue p = endPt doubleCover p true Refl≢loop : Refl ≡ loop → ⊥ Refl≢loop p = true≢false (cong endPtOfTrue p)