-- ignore module 1FundamentalGroup.Quest2 where open import 1FundamentalGroup.Preambles.P2 data _⊔_ (A B : Type) : Type where inl : A → A ⊔ B inr : B → A ⊔ B {- ℤ≡ℕ⊔ℕ : ℤ ≡ ℕ ⊔ ℕ ℤ≡ℕ⊔ℕ = {!!} ∙refl : {A : Type} {x y : A} (p : x ≡ y) → p ∙ refl ≡ p ∙refl = {!!} refl∙ : {A : Type} {x y : A} (p : x ≡ y) → refl ∙ p ≡ p refl∙ = {!!} ∙sym : {A : Type} {x y : A} (p : x ≡ y) → p ∙ sym p ≡ refl ∙sym = {!!} sym∙ : {A : Type} {x y : A} (p : x ≡ y) → (sym p) ∙ p ≡ refl sym∙ = {!!} assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r) assoc {A} = {!!} -} {- Your definition of ⊔NoConfusion goes here. Your definition of Path≡⊔NoConfusion goes here. Your definition of isSet⊔NoConfusion goes here. Your definition of isSet⊔ goes here. Your definition of isSetℤ goes here. -}