Complete 1FundamentalGroup/Quest1.agda
This commit is contained in:
parent
553d41a5a4
commit
e6afea6d88
@ -7,29 +7,44 @@ loopSpace : (A : Type) (a : A) → Type
|
||||
loopSpace A a = a ≡ a
|
||||
|
||||
loop_times : ℤ → loopSpace S¹ base
|
||||
loop n times = {!!}
|
||||
loop pos zero times = refl
|
||||
loop pos (suc n) times = loop ∙ loop (pos n) times
|
||||
loop negsuc zero times = sym loop
|
||||
loop negsuc (suc n) times = sym loop ∙ loop (negsuc n) times
|
||||
|
||||
{-
|
||||
The definition of sucℤ goes here.
|
||||
-}
|
||||
|
||||
{-
|
||||
The definition of predℤ goes here.
|
||||
-}
|
||||
sucℤ : ℤ → ℤ
|
||||
sucℤ (pos n) = pos (suc n)
|
||||
sucℤ (negsuc zero) = pos zero
|
||||
sucℤ (negsuc (suc n)) = negsuc n
|
||||
|
||||
{-
|
||||
The definition of sucℤIso goes here.
|
||||
-}
|
||||
predℤ : ℤ → ℤ
|
||||
predℤ (pos zero) = negsuc zero
|
||||
predℤ (pos (suc n)) = pos n
|
||||
predℤ (negsuc n) = negsuc (suc n)
|
||||
|
||||
{-
|
||||
The definition of sucℤPath goes here.
|
||||
-}
|
||||
sucℤIso : ℤ ≅ ℤ
|
||||
sucℤIso = iso sucℤ predℤ leftInv rightInv where
|
||||
|
||||
leftInv : section sucℤ predℤ
|
||||
leftInv (pos zero) = refl
|
||||
leftInv (pos (suc n)) = refl
|
||||
leftInv (negsuc n) = refl
|
||||
|
||||
rightInv : retract sucℤ predℤ
|
||||
rightInv (pos n) = refl
|
||||
rightInv (negsuc zero) = refl
|
||||
rightInv (negsuc (suc n)) = refl
|
||||
|
||||
sucℤPath : ℤ ≡ ℤ
|
||||
sucℤPath = isoToPath sucℤIso
|
||||
|
||||
helix : S¹ → Type
|
||||
helix = {!!}
|
||||
helix base = ℤ
|
||||
helix (loop i) = sucℤPath i
|
||||
|
||||
windingNumberBase : base ≡ base → ℤ
|
||||
windingNumberBase = {!!}
|
||||
windingNumberBase p = endPt helix p (pos zero)
|
||||
|
||||
windingNumber : (x : S¹) → base ≡ x → helix x
|
||||
windingNumber = {!!}
|
||||
windingNumber x p = endPt helix p (pos zero)
|
||||
|
Loading…
Reference in New Issue
Block a user