Complete 1FundamentalGroup/Quest1.agda
This commit is contained in:
parent
553d41a5a4
commit
e6afea6d88
@ -7,29 +7,44 @@ loopSpace : (A : Type) (a : A) → Type
|
|||||||
loopSpace A a = a ≡ a
|
loopSpace A a = a ≡ a
|
||||||
|
|
||||||
loop_times : ℤ → loopSpace S¹ base
|
loop_times : ℤ → loopSpace S¹ base
|
||||||
loop n times = {!!}
|
loop pos zero times = refl
|
||||||
|
loop pos (suc n) times = loop ∙ loop (pos n) times
|
||||||
|
loop negsuc zero times = sym loop
|
||||||
|
loop negsuc (suc n) times = sym loop ∙ loop (negsuc n) times
|
||||||
|
|
||||||
{-
|
|
||||||
The definition of sucℤ goes here.
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
sucℤ : ℤ → ℤ
|
||||||
The definition of predℤ goes here.
|
sucℤ (pos n) = pos (suc n)
|
||||||
-}
|
sucℤ (negsuc zero) = pos zero
|
||||||
|
sucℤ (negsuc (suc n)) = negsuc n
|
||||||
|
|
||||||
{-
|
predℤ : ℤ → ℤ
|
||||||
The definition of sucℤIso goes here.
|
predℤ (pos zero) = negsuc zero
|
||||||
-}
|
predℤ (pos (suc n)) = pos n
|
||||||
|
predℤ (negsuc n) = negsuc (suc n)
|
||||||
|
|
||||||
{-
|
sucℤIso : ℤ ≅ ℤ
|
||||||
The definition of sucℤPath goes here.
|
sucℤIso = iso sucℤ predℤ leftInv rightInv where
|
||||||
-}
|
|
||||||
|
leftInv : section sucℤ predℤ
|
||||||
|
leftInv (pos zero) = refl
|
||||||
|
leftInv (pos (suc n)) = refl
|
||||||
|
leftInv (negsuc n) = refl
|
||||||
|
|
||||||
|
rightInv : retract sucℤ predℤ
|
||||||
|
rightInv (pos n) = refl
|
||||||
|
rightInv (negsuc zero) = refl
|
||||||
|
rightInv (negsuc (suc n)) = refl
|
||||||
|
|
||||||
|
sucℤPath : ℤ ≡ ℤ
|
||||||
|
sucℤPath = isoToPath sucℤIso
|
||||||
|
|
||||||
helix : S¹ → Type
|
helix : S¹ → Type
|
||||||
helix = {!!}
|
helix base = ℤ
|
||||||
|
helix (loop i) = sucℤPath i
|
||||||
|
|
||||||
windingNumberBase : base ≡ base → ℤ
|
windingNumberBase : base ≡ base → ℤ
|
||||||
windingNumberBase = {!!}
|
windingNumberBase p = endPt helix p (pos zero)
|
||||||
|
|
||||||
windingNumber : (x : S¹) → base ≡ x → helix x
|
windingNumber : (x : S¹) → base ≡ x → helix x
|
||||||
windingNumber = {!!}
|
windingNumber x p = endPt helix p (pos zero)
|
||||||
|
Loading…
Reference in New Issue
Block a user