groupoid laws in quest2
This commit is contained in:
parent
ee0f734da2
commit
e3436705de
@ -2,27 +2,46 @@
|
|||||||
module 1FundamentalGroup.Quest2 where
|
module 1FundamentalGroup.Quest2 where
|
||||||
open import 1FundamentalGroup.Preambles.P2
|
open import 1FundamentalGroup.Preambles.P2
|
||||||
|
|
||||||
{-
|
data _⊔_ (A B : Type) : Type where
|
||||||
The definition of sucℤ goes here.
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
inl : A → A ⊔ B
|
||||||
The definition of predℤ goes here.
|
inr : B → A ⊔ B
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
ℤ≡ℕ⊔ℕ : ℤ ≡ ℕ ⊔ ℕ
|
||||||
The definition of sucℤIso goes here.
|
ℤ≡ℕ⊔ℕ = {!!}
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
∙refl : {A : Type} {x y : A} (p : x ≡ y) → p ∙ refl ≡ p
|
||||||
The definition of sucℤPath goes here.
|
∙refl = {!!}
|
||||||
-}
|
|
||||||
|
|
||||||
helix : S¹ → Type
|
refl∙ : {A : Type} {x y : A} (p : x ≡ y) → refl ∙ p ≡ p
|
||||||
helix = {!!}
|
refl∙ = {!!}
|
||||||
|
|
||||||
windingNumberBase : base ≡ base → ℤ
|
∙sym : {A : Type} {x y : A} (p : x ≡ y) → p ∙ sym p ≡ refl
|
||||||
windingNumberBase = {!!}
|
∙sym = J (λ y p → p ∙ sym p ≡ refl)
|
||||||
|
(
|
||||||
|
refl ∙ sym refl
|
||||||
|
≡⟨ cong (λ p → refl ∙ p) symRefl ⟩
|
||||||
|
refl ∙ refl
|
||||||
|
≡⟨ refl∙refl ⟩
|
||||||
|
refl ∎)
|
||||||
|
|
||||||
windingNumber : (x : S¹) → base ≡ x → helix x
|
sym∙ : {A : Type} {x y : A} (p : x ≡ y) → (sym p) ∙ p ≡ refl
|
||||||
windingNumber = {!!}
|
sym∙ = J (λ y p → (sym p) ∙ p ≡ refl)
|
||||||
|
(
|
||||||
|
(sym refl) ∙ refl
|
||||||
|
≡⟨ cong (λ p → p ∙ refl) symRefl ⟩
|
||||||
|
refl ∙ refl
|
||||||
|
≡⟨ refl∙refl ⟩
|
||||||
|
refl ∎)
|
||||||
|
|
||||||
|
assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z)
|
||||||
|
→ (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)
|
||||||
|
assoc {A} = J
|
||||||
|
-- casing on p
|
||||||
|
(λ x p → {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r))
|
||||||
|
-- reduce to showing when p = refl
|
||||||
|
λ q r → (refl ∙ q) ∙ r
|
||||||
|
≡⟨ cong (λ p' → p' ∙ r) (refl∙ q) ⟩
|
||||||
|
q ∙ r
|
||||||
|
≡⟨ sym (refl∙ (q ∙ r)) ⟩
|
||||||
|
refl ∙ q ∙ r ∎
|
||||||
|
@ -51,11 +51,11 @@ sym∙ = J (λ y p → (sym p) ∙ p ≡ refl)
|
|||||||
≡⟨ refl∙refl ⟩
|
≡⟨ refl∙refl ⟩
|
||||||
refl ∎)
|
refl ∎)
|
||||||
|
|
||||||
assoc : {A : Type} {w x : A} (p : w ≡ x) {y : A} (q : x ≡ y) {z : A} (r : y ≡ z)
|
assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z)
|
||||||
→ (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)
|
→ (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)
|
||||||
assoc {A} {w} = J
|
assoc {A} = J
|
||||||
-- casing on p
|
-- casing on p
|
||||||
(λ x p → {y : A} (q : x ≡ y) {z : A} (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r))
|
(λ x p → {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r))
|
||||||
-- reduce to showing when p = refl
|
-- reduce to showing when p = refl
|
||||||
λ q r → (refl ∙ q) ∙ r
|
λ q r → (refl ∙ q) ∙ r
|
||||||
≡⟨ cong (λ p' → p' ∙ r) (refl∙ q) ⟩
|
≡⟨ cong (λ p' → p' ∙ r) (refl∙ q) ⟩
|
||||||
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user