groupoid laws in quest2

This commit is contained in:
Jlh18 2021-10-03 18:20:44 +01:00
parent ee0f734da2
commit e3436705de
4 changed files with 40 additions and 21 deletions

View File

@ -2,27 +2,46 @@
module 1FundamentalGroup.Quest2 where module 1FundamentalGroup.Quest2 where
open import 1FundamentalGroup.Preambles.P2 open import 1FundamentalGroup.Preambles.P2
{- data _⊔_ (A B : Type) : Type where
The definition of suc goes here.
-}
{- inl : A A B
The definition of pred goes here. inr : B A B
-}
{- ℤ≡ℕ⊔ℕ :
The definition of sucIso goes here. ℤ≡ℕ⊔ℕ = {!!}
-}
{- ∙refl : {A : Type} {x y : A} (p : x y) p refl p
The definition of sucPath goes here. ∙refl = {!!}
-}
helix : Type refl∙ : {A : Type} {x y : A} (p : x y) refl p p
helix = {!!} refl∙ = {!!}
windingNumberBase : base base ∙sym : {A : Type} {x y : A} (p : x y) p sym p refl
windingNumberBase = {!!} ∙sym = J (λ y p p sym p refl)
(
refl sym refl
≡⟨ cong (λ p refl p) symRefl
refl refl
≡⟨ refl∙refl
refl )
windingNumber : (x : ) base x helix x sym∙ : {A : Type} {x y : A} (p : x y) (sym p) p refl
windingNumber = {!!} sym∙ = J (λ y p (sym p) p refl)
(
(sym refl) refl
≡⟨ cong (λ p p refl) symRefl
refl refl
≡⟨ refl∙refl
refl )
assoc : {A : Type} {w x : A} (p : w x) {y z : A} (q : x y) (r : y z)
(p q) r p (q r)
assoc {A} = J
-- casing on p
(λ x p {y z : A} (q : x y) (r : y z) (p q) r p (q r))
-- reduce to showing when p = refl
λ q r (refl q) r
≡⟨ cong (λ p' p' r) (refl∙ q)
q r
≡⟨ sym (refl∙ (q r))
refl q r

View File

@ -51,11 +51,11 @@ sym∙ = J (λ y p → (sym p) ∙ p ≡ refl)
≡⟨ refl∙refl ≡⟨ refl∙refl
refl ) refl )
assoc : {A : Type} {w x : A} (p : w x) {y : A} (q : x y) {z : A} (r : y z) assoc : {A : Type} {w x : A} (p : w x) {y z : A} (q : x y) (r : y z)
(p q) r p (q r) (p q) r p (q r)
assoc {A} {w} = J assoc {A} = J
-- casing on p -- casing on p
(λ x p {y : A} (q : x y) {z : A} (r : y z) (p q) r p (q r)) (λ x p {y z : A} (q : x y) (r : y z) (p q) r p (q r))
-- reduce to showing when p = refl -- reduce to showing when p = refl
λ q r (refl q) r λ q r (refl q) r
≡⟨ cong (λ p' p' r) (refl∙ q) ≡⟨ cong (λ p' p' r) (refl∙ q)