Delete 0Trinitarianism/bin directory
This commit is contained in:
parent
818d8dbb52
commit
d63758972b
@ -1,216 +0,0 @@
|
|||||||
module Trinitarianism.AsProps.Quest0 where
|
|
||||||
open import Trinitarianism.AsProps.Quest0Preamble
|
|
||||||
|
|
||||||
{-
|
|
||||||
Here are some things that we could like to have in a logical framework
|
|
||||||
* Propositions (with the data of proofs)
|
|
||||||
* Objects to reason about with propositions
|
|
||||||
|
|
||||||
To make propositions we want
|
|
||||||
* False ⊥
|
|
||||||
* True ⊤
|
|
||||||
* Or ∨
|
|
||||||
* And ∧
|
|
||||||
* Implication →
|
|
||||||
|
|
||||||
but propositions are useless if they're not talking about anything,
|
|
||||||
so we also want
|
|
||||||
* Predicates
|
|
||||||
* Exists ∃
|
|
||||||
* For all ∀
|
|
||||||
* Equality ≡ (of objects)
|
|
||||||
-}
|
|
||||||
|
|
||||||
-- Here is how we define 'true'
|
|
||||||
data ⊤ : Prop where
|
|
||||||
trivial : ⊤
|
|
||||||
|
|
||||||
{- It reads '⊤ is a proposition and there is a proof of it, called "trivial"'. -}
|
|
||||||
|
|
||||||
-- Here is how we define 'false'
|
|
||||||
data ⊥ : Prop where
|
|
||||||
|
|
||||||
{- This says that ⊥ is the proposition where there are no proofs of it. -}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Given two propositions P and Q, we can form a new proposition 'P implies Q'
|
|
||||||
written P → Q
|
|
||||||
To introduce a proof of P → Q we assume a proof x of P and give a proof y of Q
|
|
||||||
|
|
||||||
Here is an example demonstrating → in action
|
|
||||||
-}
|
|
||||||
|
|
||||||
TrueToTrue : ⊤ → ⊤
|
|
||||||
TrueToTrue = ?
|
|
||||||
|
|
||||||
{-
|
|
||||||
* press C-c C-l (this means Ctrl-c Ctrl-l) to load the document,
|
|
||||||
and now you can fill the holes
|
|
||||||
* navigate to the hole { } using C-c C-f (forward) or C-c C-b (backward)
|
|
||||||
* press C-c C-r and agda will try to help you (r for refine)
|
|
||||||
* you should see λ x → { }
|
|
||||||
* navigate to the new hole
|
|
||||||
* C-c C-, to check what agda wants in the hole (C-c C-comma)
|
|
||||||
* the Goal area should look like
|
|
||||||
|
|
||||||
Goal: ⊤
|
|
||||||
————————————————————————————————————————————————————————————
|
|
||||||
x : ⊤
|
|
||||||
|
|
||||||
* this means you have a proof of ⊤ 'x : ⊤' and you need to give a proof of ⊤
|
|
||||||
* you can now give it a proof of ⊤ and press C-c C-SPC to fill the hole
|
|
||||||
|
|
||||||
There is more than one proof (see solutions) - are they the same?
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Let's assume we have the following the naturals ℕ
|
|
||||||
and try to define the 'predicate on ℕ' given by 'x is 0'
|
|
||||||
-}
|
|
||||||
isZero : ℕ → Prop
|
|
||||||
isZero zero = ?
|
|
||||||
isZero (suc n) = ?
|
|
||||||
|
|
||||||
{-
|
|
||||||
Here's how:
|
|
||||||
* when x is zero, we give the proposition ⊤
|
|
||||||
(try typing it in by writing \top then pressing C-c C-SPC)
|
|
||||||
* when x is suc n (i.e. 'n + 1', suc for successor) we give ⊥ (\bot)
|
|
||||||
This is technically using induction - see AsTypes.
|
|
||||||
|
|
||||||
In general a 'predicate on ℕ' is just a 'function' P : ℕ → Prop
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
You can check if zero is indeed zero by clicking C-c C-n,
|
|
||||||
which brings up a thing on the bottom saying 'Expression',
|
|
||||||
and you can type the following
|
|
||||||
isZero zero
|
|
||||||
isZero (suc zero)
|
|
||||||
isZero (suc (suc zero))
|
|
||||||
...
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
We can prove that 'there exists a natural number that isZero'
|
|
||||||
in set theory we might write
|
|
||||||
∃ x ∈ ℕ, x = 0
|
|
||||||
which in agda noation is
|
|
||||||
Σ ℕ isZero
|
|
||||||
|
|
||||||
In general if we have predicate P : ℕ → Prop we would write
|
|
||||||
Σ ℕ P
|
|
||||||
for
|
|
||||||
∃ x ∈ ℕ, P x
|
|
||||||
|
|
||||||
To formulate the result Σ ℕ isZero we need to define
|
|
||||||
a proof of it
|
|
||||||
-}
|
|
||||||
ExistsZero : Σ ℕ isZero
|
|
||||||
ExistsZero = ?
|
|
||||||
|
|
||||||
{-
|
|
||||||
To fill the hole, we need to give a natural and a proof that it is zero.
|
|
||||||
Agda will give the syntax you need:
|
|
||||||
* navigate to the correct hole then refine using C-c C-r
|
|
||||||
* there are now two holes - but which is which?
|
|
||||||
* navigate to the first holes and type C-c C-,
|
|
||||||
- for the first hole it will ask you to give it a natural 'Goal: ℕ'
|
|
||||||
- for the second hole it will ask you for a proof that
|
|
||||||
whatever you put in the first hole is zero 'Goal: isZero ?0' for example
|
|
||||||
* try to fill both holes, using C-c C-SPC as before
|
|
||||||
* for the second hole you can try also C-c C-r,
|
|
||||||
Agda knows there is an obvious proof!
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Let's show 'if all natural numbers are zero then we have a contradiction',
|
|
||||||
where 'a contradiction' is a proof of ⊥.
|
|
||||||
In maths we would write
|
|
||||||
(∀ x ∈ ℕ, x = 0) → ⊥
|
|
||||||
and the agda notation for this is
|
|
||||||
((x : ℕ) → isZero x) → ⊥
|
|
||||||
|
|
||||||
In general if we have a predicate P : ℕ → Prop then we write
|
|
||||||
(x : ℕ) → P x
|
|
||||||
to mean
|
|
||||||
∀ x ∈ ℕ, P x
|
|
||||||
-}
|
|
||||||
|
|
||||||
AllZero→⊥ : ((x : ℕ) → isZero x) → ⊥
|
|
||||||
AllZero→⊥ = ?
|
|
||||||
|
|
||||||
{-
|
|
||||||
Here is how we prove it in maths
|
|
||||||
* assume hypothesis h, a proof of (x : ℕ) → isZero x
|
|
||||||
* apply the hypothesis h to 1, deducing isZero 1, i.e. we get a proof of isZero 1
|
|
||||||
* notice isZero 1 IS ⊥
|
|
||||||
|
|
||||||
Here is how you can prove it here
|
|
||||||
* navigate to the hole and check the goal
|
|
||||||
* to assume the hypothesis (x : ℕ) → isZero x,
|
|
||||||
type an h in front like so
|
|
||||||
AllZero→⊥ h = { }
|
|
||||||
* now do
|
|
||||||
* C-c C-l to load the file
|
|
||||||
* navigate to the new hole and check the new goal
|
|
||||||
* type h in the hole, type C-c C-r
|
|
||||||
* this should give h { }
|
|
||||||
* navigate to the new hole and check the Goal
|
|
||||||
* Explanation
|
|
||||||
* (h x) is a proof of isZero x for each x
|
|
||||||
* it's now asking for a natural x such that isZero x is ⊥
|
|
||||||
* Try filling the hole with 0 and 1 and see what Agda says
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Let's try to show the mathematical statement
|
|
||||||
'any natural n is 0 or not'
|
|
||||||
but we need a definition of 'or'
|
|
||||||
-}
|
|
||||||
data OR (P Q : Prop) : Prop where
|
|
||||||
left : P → OR P Q
|
|
||||||
right : Q → OR P Q
|
|
||||||
{-
|
|
||||||
This reads
|
|
||||||
* Given propositions P and Q we have another proposition P or Q
|
|
||||||
* There are two ways of proving P or Q
|
|
||||||
* given a proof of P, left sends this to a proof of P or Q
|
|
||||||
* given a proof of Q, right sends this to a proof of P or Q
|
|
||||||
|
|
||||||
Agda supports nice notation using underscores.
|
|
||||||
-}
|
|
||||||
|
|
||||||
data _∨_ (P Q : Prop) : Prop where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
{-
|
|
||||||
[Important note]
|
|
||||||
Agda is sensitive to spaces so these are bad
|
|
||||||
|
|
||||||
data _ ∨ _ (P Q : Prop) : Prop where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
data _∨_ (P Q : Prop) : Prop where
|
|
||||||
left : P → P∨Q
|
|
||||||
right : Q → P∨Q
|
|
||||||
|
|
||||||
it is also sensitive to indentation so these are also bad
|
|
||||||
|
|
||||||
data _∨_ (P Q : Prop) : Prop where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Now we can prove it!
|
|
||||||
This technically uses induction - see AsTypes.
|
|
||||||
Fill the missing part of the theorem statement.
|
|
||||||
You need to first uncomment this by getting rid of the -- in front (C-x C-;)
|
|
||||||
-}
|
|
||||||
-- DecidableIsZero : (n : ℕ) → {!!}
|
|
||||||
-- DecidableIsZero zero = {!!}
|
|
||||||
-- DecidableIsZero (suc n) = {!!}
|
|
@ -1,12 +0,0 @@
|
|||||||
|
|
||||||
module Trinitarianism.AsProps.Quest0Preamble where
|
|
||||||
|
|
||||||
open import Cubical.Core.Everything hiding (_∨_) public
|
|
||||||
open import Cubical.Data.Nat public
|
|
||||||
|
|
||||||
private
|
|
||||||
postulate
|
|
||||||
u : Level
|
|
||||||
|
|
||||||
Prop = Type u
|
|
||||||
|
|
@ -1,43 +0,0 @@
|
|||||||
module Trinitarianism.Quest0Solutions where
|
|
||||||
open import Trinitarianism.Quest0Preamble
|
|
||||||
|
|
||||||
private
|
|
||||||
postulate
|
|
||||||
u : Level
|
|
||||||
|
|
||||||
data ⊤ : Type u where
|
|
||||||
trivial : ⊤
|
|
||||||
|
|
||||||
data ⊥ : Type u where
|
|
||||||
|
|
||||||
TrueToTrue : ⊤ → ⊤
|
|
||||||
TrueToTrue = λ x → x
|
|
||||||
|
|
||||||
TrueToTrue' : ⊤ → ⊤
|
|
||||||
TrueToTrue' x = x
|
|
||||||
|
|
||||||
TrueToTrue'' : ⊤ → ⊤
|
|
||||||
TrueToTrue'' trivial = trivial
|
|
||||||
|
|
||||||
TrueToTrue''' : ⊤ → ⊤
|
|
||||||
TrueToTrue''' x = trivial
|
|
||||||
|
|
||||||
isZero : ℕ → Type u
|
|
||||||
isZero zero = ⊤
|
|
||||||
isZero (suc n) = ⊥
|
|
||||||
|
|
||||||
ExistsZero : Σ ℕ isZero
|
|
||||||
ExistsZero = zero , trivial
|
|
||||||
|
|
||||||
AllZero→⊥ : ((x : ℕ) → isZero x) → ⊥
|
|
||||||
AllZero→⊥ h = h 1
|
|
||||||
|
|
||||||
data _∨_ (P Q : Type u) : Type u where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
DecidableIsZero : (n : ℕ) → (isZero n) ∨ (isZero n → ⊥)
|
|
||||||
DecidableIsZero zero = left trivial
|
|
||||||
DecidableIsZero (suc n) = right (λ x → x)
|
|
||||||
|
|
||||||
|
|
@ -1,39 +0,0 @@
|
|||||||
```agda
|
|
||||||
module Trinitarianism.AsProps.Quest0Solutions where
|
|
||||||
open import Trinitarianism.AsProps.Quest0Preamble
|
|
||||||
|
|
||||||
data ⊤ : Prop where
|
|
||||||
trivial : ⊤
|
|
||||||
|
|
||||||
data ⊥ : Prop where
|
|
||||||
|
|
||||||
TrueToTrue : ⊤ → ⊤
|
|
||||||
TrueToTrue = λ x → x
|
|
||||||
|
|
||||||
TrueToTrue' : ⊤ → ⊤
|
|
||||||
TrueToTrue' x = x
|
|
||||||
|
|
||||||
TrueToTrue'' : ⊤ → ⊤
|
|
||||||
TrueToTrue'' trivial = trivial
|
|
||||||
|
|
||||||
TrueToTrue''' : ⊤ → ⊤
|
|
||||||
TrueToTrue''' x = trivial
|
|
||||||
|
|
||||||
isZero : ℕ → Prop
|
|
||||||
isZero zero = ⊤
|
|
||||||
isZero (suc n) = ⊥
|
|
||||||
|
|
||||||
ExistsZero : Σ ℕ isZero
|
|
||||||
ExistsZero = zero , trivial
|
|
||||||
|
|
||||||
AllZero→⊥ : ((x : ℕ) → isZero x) → ⊥
|
|
||||||
AllZero→⊥ h = h 1
|
|
||||||
|
|
||||||
data _∨_ (P Q : Prop) : Prop where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
DecidableIsZero : (n : ℕ) → (isZero n) ∨ (isZero n → ⊥)
|
|
||||||
DecidableIsZero zero = left trivial
|
|
||||||
DecidableIsZero (suc n) = right (λ x → x)
|
|
||||||
```
|
|
@ -1,13 +0,0 @@
|
|||||||
{-
|
|
||||||
Two things being equal is also a proposition
|
|
||||||
|
|
||||||
-}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
-- FalseToTrue : ⊥ → ⊤
|
|
||||||
-- FalseToTrue = λ x → trivial
|
|
||||||
|
|
||||||
-- FalseToTrue' : ⊥ → ⊤
|
|
||||||
-- FalseToTrue' ()
|
|
@ -1,227 +0,0 @@
|
|||||||
module Trinitarianism.AsTypes.Quest0 where
|
|
||||||
|
|
||||||
open import Cubical.Core.Everything hiding (_∨_)
|
|
||||||
-- ------------------------------
|
|
||||||
|
|
||||||
{-
|
|
||||||
In this branch,
|
|
||||||
we develop the point of view of types as constructions / programs.
|
|
||||||
|
|
||||||
Here is our first construction.
|
|
||||||
-}
|
|
||||||
data Unit : Type where
|
|
||||||
trivial : Unit
|
|
||||||
{-
|
|
||||||
This reads 'Unit is a type of construction and
|
|
||||||
there is a recipe for it, called "trivial"'.
|
|
||||||
|
|
||||||
Here is another construction.
|
|
||||||
-}
|
|
||||||
|
|
||||||
data Empty : Type where
|
|
||||||
|
|
||||||
{-
|
|
||||||
This says that Empty is a construction and
|
|
||||||
there are no recipes for it.
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Given two constructions A and B,
|
|
||||||
'converting recipes of A into recipes of B' is itself a type of construction,
|
|
||||||
written A → B.
|
|
||||||
To give a recipe of A → B,
|
|
||||||
we assume a recipe x of A and give a recipe y of B.
|
|
||||||
|
|
||||||
Here is an example demonstrating → in action
|
|
||||||
-}
|
|
||||||
|
|
||||||
UnitToUnit : Unit → Unit
|
|
||||||
UnitToUnit = {!!}
|
|
||||||
|
|
||||||
{-
|
|
||||||
* press C-c C-l (this means Ctrl-c Ctrl-l) to load the document,
|
|
||||||
and now you can fill the holes
|
|
||||||
* navigate to the hole { } using C-c C-f (forward) or C-c C-b (backward)
|
|
||||||
* press C-c C-r and agda will try to help you (r for refine)
|
|
||||||
* you should see λ x → { }
|
|
||||||
* navigate to the new hole
|
|
||||||
* C-c C-, to check what agda wants in the hole (C-c C-comma)
|
|
||||||
* the Goal area should look like
|
|
||||||
|
|
||||||
Goal: Unit
|
|
||||||
————————————————————————————————————————————————————————————
|
|
||||||
x : Unit
|
|
||||||
|
|
||||||
* this means you have a proof of Unit 'x : Unit' and you need to give a proof of Unit
|
|
||||||
* you can now give it a proof of Unit and press C-c C-SPC to fill the hole
|
|
||||||
|
|
||||||
There is more than one proof (see solutions) - are they the same?
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
We can also encode "natural numbers" as a type of construction.
|
|
||||||
-}
|
|
||||||
data ℕ : Type where
|
|
||||||
zero : ℕ
|
|
||||||
suc : ℕ → ℕ
|
|
||||||
{-
|
|
||||||
This reads '
|
|
||||||
- ℕ is a type of construction
|
|
||||||
- "zero" is a recipe for ℕ
|
|
||||||
- "suc" takes an existing recipe for ℕ and gives
|
|
||||||
another recipe for ℕ.
|
|
||||||
'
|
|
||||||
-}
|
|
||||||
{-
|
|
||||||
Let's write a program that
|
|
||||||
"given a recipe n of ℕ, tells us whether it is zero".
|
|
||||||
|
|
||||||
TODO finish this.
|
|
||||||
-}
|
|
||||||
isZero : ℕ → Type
|
|
||||||
isZero zero = {!!}
|
|
||||||
isZero (suc n) = {!!}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Here's how:
|
|
||||||
* when x is zero, we give the proposition Unit
|
|
||||||
(try typing it in by writing \top then pressing C-c C-SPC)
|
|
||||||
* when x is suc n (i.e. 'n + 1', suc for successor) we give Empty (\bot)
|
|
||||||
This is technically using induction - see AsTypes.
|
|
||||||
|
|
||||||
In general a 'predicate on ℕ' is just a 'function' P : ℕ → Type
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
You can check if zero is indeed zero by clicking C-c C-n,
|
|
||||||
which brings up a thing on the bottom saying 'Expression',
|
|
||||||
and you can type the following
|
|
||||||
isZero zero
|
|
||||||
isZero (suc zero)
|
|
||||||
isZero (suc (suc zero))
|
|
||||||
...
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
We can prove that 'there exists a natural number that isZero'
|
|
||||||
in set theory we might write
|
|
||||||
∃ x ∈ ℕ, x = 0
|
|
||||||
which in agda noation is
|
|
||||||
Σ ℕ isZero
|
|
||||||
|
|
||||||
In general if we have predicate P : ℕ → Type we would write
|
|
||||||
Σ ℕ P
|
|
||||||
for
|
|
||||||
∃ x ∈ ℕ, P x
|
|
||||||
|
|
||||||
To formulate the result Σ ℕ isZero we need to define
|
|
||||||
a proof of it
|
|
||||||
-}
|
|
||||||
ExistsZero : Σ ℕ isZero
|
|
||||||
ExistsZero = {!!}
|
|
||||||
|
|
||||||
{-
|
|
||||||
To fill the hole, we need to give a natural and a proof that it is zero.
|
|
||||||
Agda will give the syntax you need:
|
|
||||||
* navigate to the correct hole then refine using C-c C-r
|
|
||||||
* there are now two holes - but which is which?
|
|
||||||
* navigate to the first holes and type C-c C-,
|
|
||||||
- for the first hole it will ask you to give it a natural 'Goal: ℕ'
|
|
||||||
- for the second hole it will ask you for a proof that
|
|
||||||
whatever you put in the first hole is zero 'Goal: isZero ?0' for example
|
|
||||||
* try to fill both holes, using C-c C-SPC as before
|
|
||||||
* for the second hole you can try also C-c C-r,
|
|
||||||
Agda knows there is an obvious proof!
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Let's show 'if all natural numbers are zero then we have a contradiction',
|
|
||||||
where 'a contradiction' is a proof of Empty.
|
|
||||||
In maths we would write
|
|
||||||
(∀ x ∈ ℕ, x = 0) → Empty
|
|
||||||
and the agda notation for this is
|
|
||||||
((x : ℕ) → isZero x) → Empty
|
|
||||||
|
|
||||||
In general if we have a predicate P : ℕ → Type then we write
|
|
||||||
(x : ℕ) → P x
|
|
||||||
to mean
|
|
||||||
∀ x ∈ ℕ, P x
|
|
||||||
-}
|
|
||||||
|
|
||||||
AllZero→Empty : ((x : ℕ) → isZero x) → Empty
|
|
||||||
AllZero→Empty = {!!}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Here is how we prove it in maths
|
|
||||||
* assume hypothesis h, a proof of (x : ℕ) → isZero x
|
|
||||||
* apply the hypothesis h to 1, deducing isZero 1, i.e. we get a proof of isZero 1
|
|
||||||
* notice isZero 1 IS Empty
|
|
||||||
|
|
||||||
Here is how you can prove it here
|
|
||||||
* navigate to the hole and check the goal
|
|
||||||
* to assume the hypothesis (x : ℕ) → isZero x,
|
|
||||||
type an h in front like so
|
|
||||||
AllZero→Empty h = { }
|
|
||||||
* now do
|
|
||||||
* C-c C-l to load the file
|
|
||||||
* navigate to the new hole and check the new goal
|
|
||||||
* type h in the hole, type C-c C-r
|
|
||||||
* this should give h { }
|
|
||||||
* navigate to the new hole and check the Goal
|
|
||||||
* Explanation
|
|
||||||
* (h x) is a proof of isZero x for each x
|
|
||||||
* it's now asking for a natural x such that isZero x is Empty
|
|
||||||
* Try filling the hole with 0 and 1 and see what Agda says
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Let's try to show the mathematical statement
|
|
||||||
'any natural n is 0 or not'
|
|
||||||
but we need a definition of 'or'
|
|
||||||
-}
|
|
||||||
data OR (P Q : Type) : Type where
|
|
||||||
left : P → OR P Q
|
|
||||||
right : Q → OR P Q
|
|
||||||
{-
|
|
||||||
This reads
|
|
||||||
* Given propositions P and Q we have another proposition P or Q
|
|
||||||
* There are two ways of proving P or Q
|
|
||||||
* given a proof of P, left sends this to a proof of P or Q
|
|
||||||
* given a proof of Q, right sends this to a proof of P or Q
|
|
||||||
|
|
||||||
Agda supports nice notation using underscores.
|
|
||||||
-}
|
|
||||||
|
|
||||||
data _∨_ (P Q : Type) : Type where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
{-
|
|
||||||
[Important note]
|
|
||||||
Agda is sensitive to spaces so these are bad
|
|
||||||
|
|
||||||
data _ ∨ _ (P Q : Type) : Type where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
data _∨_ (P Q : Type) : Type where
|
|
||||||
left : P → P∨Q
|
|
||||||
right : Q → P∨Q
|
|
||||||
|
|
||||||
it is also sensitive to indentation so these are also bad
|
|
||||||
|
|
||||||
data _∨_ (P Q : Type) : Type where
|
|
||||||
left : P → P ∨ Q
|
|
||||||
right : Q → P ∨ Q
|
|
||||||
|
|
||||||
-}
|
|
||||||
|
|
||||||
{-
|
|
||||||
Now we can prove it!
|
|
||||||
This technically uses induction - see AsTypes.
|
|
||||||
Fill the missing part of the theorem statement.
|
|
||||||
You need to first uncomment this by getting rid of the -- in front (C-x C-;)
|
|
||||||
-}
|
|
||||||
-- DecidableIsZero : (n : ℕ) → {!!}
|
|
||||||
-- DecidableIsZero zero = {!!}
|
|
||||||
-- DecidableIsZero (suc n) = {!!}
|
|
Loading…
Reference in New Issue
Block a user