finished rewind
This commit is contained in:
parent
81dbe9004c
commit
9a2ddfed2a
@ -19,68 +19,6 @@ pathToFun→ A B f =
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
{-
|
|
||||||
|
|
||||||
private
|
|
||||||
variable
|
|
||||||
ℓ : Level
|
|
||||||
|
|
||||||
transport→ : {A B : I → Type ℓ} (f : A i0 → B i0) (x : A i0) →
|
|
||||||
transport (λ i → A i → B i) f (transport (λ i → A i) x) ≡ transport (λ i → B i) (f x)
|
|
||||||
transport→ {A = A} {B = B} f x =
|
|
||||||
J
|
|
||||||
(λ A1 A →
|
|
||||||
transport (λ i → A i → B i) f (transport (λ i → A i) x) ≡ transport (λ i → B i) (f x))
|
|
||||||
(J
|
|
||||||
(λ B1 B →
|
|
||||||
transport (λ i → A i0 → B i) f (transport (λ i → A i0) x) ≡ transport (λ i → B i) (f x))
|
|
||||||
(
|
|
||||||
transport (λ i → A i0 → B i0) f (transport (λ i → A i0) x)
|
|
||||||
≡⟨ cong (transport (λ i → A i0 → B i0) f) (transportRefl x) ⟩
|
|
||||||
transport (λ i → A i0 → B i0) f x
|
|
||||||
≡⟨ cong (λ g → g x) (transportRefl f) ⟩
|
|
||||||
f x
|
|
||||||
≡⟨ sym (transportRefl (f x)) ⟩
|
|
||||||
transport (λ i → B i0) (f x) ∎
|
|
||||||
)
|
|
||||||
λ i → B i
|
|
||||||
)
|
|
||||||
λ i → A i
|
|
||||||
-- J (λ A1 A → transport (λ i → A i → B i) f ≡ λ a1 → transport B (f (transport (sym A) a1)))
|
|
||||||
-- (funExt (λ a1 → refl)) A
|
|
||||||
|
|
||||||
transport→' : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) →
|
|
||||||
transport (λ i → A i → B i) f ≡ λ a1 → transport B (f (transport (sym A) a1))
|
|
||||||
transport→' {A = A} {B = B} f =
|
|
||||||
J (λ A1 A → transport (λ i → A i → B i) f ≡ λ a1 → transport B (f (transport (sym A) a1)))
|
|
||||||
refl A
|
|
||||||
|
|
||||||
pathToFun→ : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) →
|
|
||||||
pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))
|
|
||||||
pathToFun→ {A = A} {B = B} f =
|
|
||||||
J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)))
|
|
||||||
refl A
|
|
||||||
|
|
||||||
pathToFun→' : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) →
|
|
||||||
pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))
|
|
||||||
pathToFun→' {A0} {A1} {B0} {B1} {A} {B} f =
|
|
||||||
J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)))
|
|
||||||
(
|
|
||||||
J (λ B1 B → pathToFun (λ i → A0 → B i) f ≡ λ a → pathToFun B (f (pathToFun refl a)))
|
|
||||||
(
|
|
||||||
funExt λ a →
|
|
||||||
pathToFun refl f a
|
|
||||||
≡⟨ cong (λ g → g a) (pathToFunRefl f) ⟩
|
|
||||||
f a
|
|
||||||
≡⟨ sym (pathToFunRefl (f a)) ⟩
|
|
||||||
pathToFun refl (f a)
|
|
||||||
≡⟨ cong (λ x → pathToFun refl (f x)) (sym (pathToFunRefl a)) ⟩
|
|
||||||
pathToFun refl (f (pathToFun refl a)) ∎
|
|
||||||
)
|
|
||||||
B
|
|
||||||
)
|
|
||||||
A -}
|
|
||||||
|
|
||||||
open ℤ
|
open ℤ
|
||||||
|
|
||||||
loopSucℤtimes : (n : ℤ) → loop n times ∙ loop ≡ loop sucℤ n times
|
loopSucℤtimes : (n : ℤ) → loop n times ∙ loop ≡ loop sucℤ n times
|
||||||
|
Loading…
Reference in New Issue
Block a user