quest2 -> quest1
This commit is contained in:
parent
87834c2ae0
commit
8c8c1618d1
@ -1,9 +1,9 @@
|
|||||||
module 1FundamentalGroup.Preambles.P1 where
|
module 1FundamentalGroup.Preambles.P1 where
|
||||||
|
|
||||||
open import Cubical.HITs.S1 public
|
open import Cubical.HITs.S1 using (S¹ ; base ; loop) public
|
||||||
open import Cubical.Data.Nat using (ℕ ; suc ; zero) public
|
open import Cubical.Data.Nat using (ℕ ; suc ; zero) public
|
||||||
open import Cubical.Data.Int using (ℤ ; pos ; negsuc) public
|
open import Cubical.Data.Int using (ℤ ; pos ; negsuc ; -_) public
|
||||||
open import Cubical.Data.Empty public
|
open import Cubical.Data.Empty public
|
||||||
open import Cubical.Foundations.Prelude public
|
open import Cubical.Foundations.Prelude renaming (subst to endPt) public
|
||||||
open import Cubical.Foundations.HLevels public
|
open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) public
|
||||||
open import 1FundamentalGroup.Quest0Solutions using ( Refl ; Refl≢loop ) public
|
open import 1FundamentalGroup.Quest0Solutions using ( Refl ; Refl≢loop ) public
|
||||||
|
@ -9,8 +9,27 @@ open import 1FundamentalGroup.Preambles.P1
|
|||||||
loop_times : ℤ → Ω S¹ base
|
loop_times : ℤ → Ω S¹ base
|
||||||
loop n times = {!!}
|
loop n times = {!!}
|
||||||
|
|
||||||
¬isSetS¹ : isSet S¹ → ⊥
|
{-
|
||||||
¬isSetS¹ = {!!}
|
The definition of sucℤ goes here.
|
||||||
|
-}
|
||||||
|
|
||||||
¬isPropS¹ : isProp S¹ → ⊥
|
{-
|
||||||
¬isPropS¹ = {!!}
|
The definition of predℤ goes here.
|
||||||
|
-}
|
||||||
|
|
||||||
|
{-
|
||||||
|
The definition of sucℤIso goes here.
|
||||||
|
-}
|
||||||
|
|
||||||
|
{-
|
||||||
|
The definition of sucℤPath goes here.
|
||||||
|
-}
|
||||||
|
|
||||||
|
helix : S¹ → Type
|
||||||
|
helix = {!!}
|
||||||
|
|
||||||
|
windingNumberBase : base ≡ base → ℤ
|
||||||
|
windingNumberBase = {!!}
|
||||||
|
|
||||||
|
windingNumber : (x : S¹) → base ≡ x → helix x
|
||||||
|
windingNumber = {!!}
|
||||||
|
@ -12,8 +12,40 @@ loop pos (suc n) times = loop pos n times ∙ loop
|
|||||||
loop negsuc zero times = sym loop
|
loop negsuc zero times = sym loop
|
||||||
loop negsuc (suc n) times = loop negsuc n times ∙ sym loop
|
loop negsuc (suc n) times = loop negsuc n times ∙ sym loop
|
||||||
|
|
||||||
¬isSetS¹ : isSet S¹ → ⊥
|
sucℤ : ℤ → ℤ
|
||||||
¬isSetS¹ h = Refl≢loop (h base base Refl loop)
|
sucℤ (pos n) = pos (suc n)
|
||||||
|
sucℤ (negsuc zero) = pos zero
|
||||||
|
sucℤ (negsuc (suc n)) = negsuc n
|
||||||
|
|
||||||
¬isPropS¹ : isProp S¹ → ⊥
|
predℤ : ℤ → ℤ
|
||||||
¬isPropS¹ h = ¬isSetS¹ (isProp→isSet h)
|
predℤ (pos zero) = negsuc zero
|
||||||
|
predℤ (pos (suc n)) = pos n
|
||||||
|
predℤ (negsuc n) = negsuc (suc n)
|
||||||
|
|
||||||
|
sucℤIso : ℤ ≅ ℤ
|
||||||
|
sucℤIso = iso sucℤ predℤ s r where
|
||||||
|
|
||||||
|
s : section sucℤ predℤ
|
||||||
|
s (pos zero) = refl
|
||||||
|
s (pos (suc n)) = refl
|
||||||
|
s (negsuc zero) = refl
|
||||||
|
s (negsuc (suc n)) = refl
|
||||||
|
|
||||||
|
r : retract sucℤ predℤ
|
||||||
|
r (pos zero) = refl
|
||||||
|
r (pos (suc n)) = refl
|
||||||
|
r (negsuc zero) = refl
|
||||||
|
r (negsuc (suc n)) = refl
|
||||||
|
|
||||||
|
sucℤPath : ℤ ≡ ℤ
|
||||||
|
sucℤPath = isoToPath sucℤIso
|
||||||
|
|
||||||
|
helix : S¹ → Type
|
||||||
|
helix base = ℤ
|
||||||
|
helix (loop i) = sucℤPath i
|
||||||
|
|
||||||
|
windingNumberBase : base ≡ base → ℤ
|
||||||
|
windingNumberBase p = endPt helix p (pos zero)
|
||||||
|
|
||||||
|
windingNumber : (x : S¹) → base ≡ x → helix x
|
||||||
|
windingNumber x p = endPt helix p (pos zero)
|
||||||
|
12
1FundamentalGroup/Shelf/questExtras.agda
Normal file
12
1FundamentalGroup/Shelf/questExtras.agda
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
¬isSetS¹ : isSet S¹ → ⊥
|
||||||
|
¬isSetS¹ = {!!}
|
||||||
|
|
||||||
|
¬isPropS¹ : isProp S¹ → ⊥
|
||||||
|
¬isPropS¹ = {!!}
|
||||||
|
|
||||||
|
-------------solutions------
|
||||||
|
¬isSetS¹ : isSet S¹ → ⊥
|
||||||
|
¬isSetS¹ h = Refl≢loop (h base base Refl loop)
|
||||||
|
|
||||||
|
¬isPropS¹ : isProp S¹ → ⊥
|
||||||
|
¬isPropS¹ h = ¬isSetS¹ (isProp→isSet h)
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user