Edited 1FundamentalGroup/Quest0.agda
This commit is contained in:
parent
682017ab75
commit
79db381ac1
@ -1,21 +1,209 @@
|
||||
module 1FundamentalGroup.Quest0 where
|
||||
|
||||
open import Cubical.Core.Everything
|
||||
open import Cubical.Data.Empty
|
||||
open import Cubical.Data.Unit renaming ( Unit to ⊤ )
|
||||
open import Cubical.Data.Bool
|
||||
open import Cubical.Foundations.Prelude
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Path
|
||||
open import Cubical.Foundations.GroupoidLaws
|
||||
|
||||
private
|
||||
variable
|
||||
u : Level
|
||||
|
||||
data S¹ : Type where
|
||||
base : S¹
|
||||
loop : base ≡ base
|
||||
|
||||
¬ : Type → Type
|
||||
-- if you don't know how to input a character
|
||||
-- go to evil-mode, put your cursor on the character
|
||||
-- and do `SPC h '`
|
||||
|
||||
¬ : Type u → Type u
|
||||
¬ A = A → ⊥
|
||||
|
||||
doubleCover : type
|
||||
doubleCover = ?
|
||||
_≢_ : {A : Type u} → (x y : A) → Type u
|
||||
x ≢ y = ¬ (x ≡ y)
|
||||
|
||||
_≅_ = Iso
|
||||
|
||||
{- Bool
|
||||
|
||||
data Bool : Type where
|
||||
true : Bool
|
||||
false : Bool
|
||||
|
||||
The above definition for the Booleans
|
||||
can be interpreted as
|
||||
|
||||
- a construction with only two recipes
|
||||
`true` and `false`
|
||||
- a space with two points `true` and `false`.
|
||||
This space is discrete in the sense that
|
||||
we haven't specified any paths.
|
||||
|
||||
Our goal is to show
|
||||
|
||||
refl ≢ loop (input \nequiv)
|
||||
|
||||
that there is path (aka homotopy) from `refl` to `loop`.
|
||||
To do so we must assume there is such a path and derive
|
||||
a contradiction.
|
||||
The contradiction we will try to reach is that `true ≡ false`.
|
||||
Indeed it does not hold:
|
||||
|
||||
-}
|
||||
|
||||
|
||||
refl≢loop : ¬ ( refl ≡ loop )
|
||||
refl≢loop h = {!!}
|
||||
{- transport
|
||||
|
||||
To follow a point in `a : A` along a path `p : A ≡ B`
|
||||
we use
|
||||
|
||||
transport : {A B : Type u} → A ≡ B → A → B
|
||||
|
||||
Why do we propify? Discuss.
|
||||
|
||||
-}
|
||||
|
||||
true≢false' : true ≢ false
|
||||
true≢false' h = transport ⊤≡⊥ tt where
|
||||
|
||||
propify : Bool → Type
|
||||
propify false = ⊥
|
||||
propify true = ⊤
|
||||
|
||||
⊤≡⊥ : ⊤ ≡ ⊥
|
||||
⊤≡⊥ = cong propify h
|
||||
|
||||
|
||||
|
||||
Flip : Bool → Bool
|
||||
Flip false = true
|
||||
Flip true = false
|
||||
|
||||
{- Iso
|
||||
|
||||
We show that Flip is an isomorphism from Bool → Bool
|
||||
with inverse Flip.
|
||||
|
||||
A proof of `A ≅ B` (input \cong or write Iso A B) is given by
|
||||
|
||||
iso f i s r
|
||||
|
||||
where
|
||||
|
||||
f : A → B and i : B → A
|
||||
|
||||
are the map and its inverse,
|
||||
here both `f` and `i` are Flip
|
||||
|
||||
`s` is a proof that `f` is a section with
|
||||
right inverse `i` and
|
||||
`r` is a proof that `f` is a retraction
|
||||
with left inverse `i`
|
||||
|
||||
-}
|
||||
|
||||
flipIso : Bool ≅ Bool
|
||||
flipIso = iso Flip Flip s r where
|
||||
s : section Flip Flip
|
||||
s false = refl
|
||||
s true = refl
|
||||
|
||||
r : retract Flip Flip
|
||||
r false = refl
|
||||
r true = refl
|
||||
|
||||
{- Path ≡
|
||||
|
||||
A corollary of univalence is
|
||||
`isoToPath` which takes an isomorphism
|
||||
`f : A ≅ B` and gives a path
|
||||
`fPath : A ≡ B`.
|
||||
The resulting path has the important property
|
||||
that when you follow (transport/subst)
|
||||
a point in `A` along the path
|
||||
you will get the point `f(a)` in `B`
|
||||
|
||||
-}
|
||||
|
||||
flipPath : Bool ≡ Bool
|
||||
flipPath = isoToPath flipIso
|
||||
|
||||
{-
|
||||
|
||||
Try out `transport` on `true : Bool` and
|
||||
`flipPath` by doing `C-c C-n`
|
||||
and typing in `transport flipPath true`
|
||||
|
||||
-}
|
||||
|
||||
{- bundle over S¹
|
||||
|
||||
We want to construct a bundle over S¹
|
||||
that looks like this:
|
||||
-- insert image of double cover
|
||||
|
||||
to do so we use flipPath
|
||||
to specify the fibers of the bundle
|
||||
at each point on the `loop`.
|
||||
These fibers must coincide at the end-points
|
||||
with the fiber we set for `base`, which is `Bool`.
|
||||
|
||||
-}
|
||||
|
||||
-- the bundle
|
||||
doubleCover : S¹ → Type
|
||||
doubleCover base = Bool
|
||||
doubleCover (loop i) = flipPath i
|
||||
|
||||
{- subst
|
||||
|
||||
Given a bundle `B : A → Type u`
|
||||
over a space `A` and a path `p : x ≡ y`
|
||||
between points in `x y : A`,
|
||||
|
||||
subst : (B : A → Type u) (p : x ≡ y) → B x → B y
|
||||
|
||||
follows the path _over_ `p`, taking one
|
||||
end point of the path in fiber `B x` to
|
||||
the other end point in fiber `B y`.
|
||||
|
||||
We use `subst` to get a function that takes a path `p : base ≡ base`
|
||||
and follows the point `true` in the fiber `doubleCover base`
|
||||
along the path over `p` to some point in `doubleCover base`.
|
||||
|
||||
Note that `doubleCover base` is just `Bool` (externally).
|
||||
|
||||
-}
|
||||
|
||||
SubstTrue : (p : base ≡ base) → doubleCover base
|
||||
SubstTrue p = subst doubleCover p true
|
||||
|
||||
{-
|
||||
|
||||
You can check that `SubstTrue refl` and `SubstTrue loop`
|
||||
are using `C-c C-n`
|
||||
|
||||
-}
|
||||
|
||||
{- cong
|
||||
|
||||
Given a function `f : A → B`
|
||||
and a path `p : x ≡ y` between points `x y : A`
|
||||
|
||||
cong : (f : A → B) → (p : x ≡ y) → f x ≡ f y
|
||||
|
||||
gives us a path in `B` from `f x` to `f y`
|
||||
|
||||
We can use the above to get the contradiction we want
|
||||
by
|
||||
|
||||
- assuming `p : refl ≡ loop`
|
||||
- deducing `SubstTrue refl ≡ SubstTrue loop` using `cong`
|
||||
|
||||
-}
|
||||
|
||||
refl≢loop : refl ≢ loop
|
||||
refl≢loop p = true≢false (cong SubstTrue p)
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user