Merge branch 'main' of https://github.com/thehottgame/TheHoTTGame
This commit is contained in:
commit
70fd1aa024
47
1FundamentalGroup/Quest2.agda
Normal file
47
1FundamentalGroup/Quest2.agda
Normal file
@ -0,0 +1,47 @@
|
||||
module 1FundamentalGroup.Quest2 where
|
||||
|
||||
open import Cubical.Core.Everything
|
||||
open import Cubical.Data.Nat
|
||||
open import Cubical.Data.Int using (ℤ ; pos ; negsuc ; -_)
|
||||
open import Cubical.Foundations.Isomorphism
|
||||
open import Cubical.Foundations.Prelude renaming (subst to endPt)
|
||||
open import Cubical.HITs.S1 using (S¹ ; base ; loop)
|
||||
open import 1FundamentalGroup.Quest1
|
||||
|
||||
sucℤ : ℤ → ℤ
|
||||
sucℤ (pos n) = pos (suc n)
|
||||
sucℤ (negsuc zero) = pos zero
|
||||
sucℤ (negsuc (suc n)) = negsuc n
|
||||
|
||||
predℤ : ℤ → ℤ
|
||||
predℤ (pos zero) = negsuc zero
|
||||
predℤ (pos (suc n)) = pos n
|
||||
predℤ (negsuc n) = negsuc (suc n)
|
||||
|
||||
sucℤIso : Iso ℤ ℤ
|
||||
sucℤIso = iso sucℤ predℤ s r where
|
||||
|
||||
s : section sucℤ predℤ
|
||||
s (pos zero) = refl
|
||||
s (pos (suc n)) = refl
|
||||
s (negsuc zero) = refl
|
||||
s (negsuc (suc n)) = refl
|
||||
|
||||
r : retract sucℤ predℤ
|
||||
r (pos zero) = refl
|
||||
r (pos (suc n)) = refl
|
||||
r (negsuc zero) = refl
|
||||
r (negsuc (suc n)) = refl
|
||||
|
||||
sucℤPath : ℤ ≡ ℤ
|
||||
sucℤPath = isoToPath sucℤIso
|
||||
|
||||
helix : S¹ → Type
|
||||
helix base = ℤ
|
||||
helix (loop i) = sucℤPath i
|
||||
|
||||
spinCountBase : base ≡ base → ℤ
|
||||
spinCountBase p = endPt helix p 0
|
||||
|
||||
spinCount : (x : S¹) → base ≡ x → helix x
|
||||
spinCount x p = endPt helix p 0
|
@ -5,6 +5,8 @@ Creating the inverse map is difficult without access to the entire circle.
|
||||
Similarly to how we used `doubleCover` to distinguish `refl` and `base`,
|
||||
the idea is to replace `Bool` with `ℤ`,
|
||||
allowing us to distinguish between all loops on `S¹`.
|
||||
In `Part0` and `Part1` we will construct one of the two comparison maps
|
||||
across the whole circle, called `spinCount`.
|
||||
|
||||
The plan is :
|
||||
|
||||
@ -14,11 +16,21 @@ The plan is :
|
||||
3. Turn `sucℤ` into a path `sucPath : ℤ ≡ ℤ` using `isoToPath`
|
||||
4. Define `helix : S¹ → Type` by mapping `base` to `ℤ` and
|
||||
a generic point `loop i` to `sucPath i`.
|
||||
<<<<<<< HEAD
|
||||
5. Use `helix` and `endPt` to define the map `base ≡ x → helix x`
|
||||
on all `x : S¹`, in particular giving us `Ω S¹ base → ℤ`
|
||||
when applied to `base`.
|
||||
|
||||
In this part, we focus on `1` and `2`.
|
||||
=======
|
||||
5. Use `helix` and `endPt` to define the map
|
||||
`spinCountBase : base ≡ base → ℤ`
|
||||
Intuitively it counts how many times a path loops around `S¹`.
|
||||
a generic point `loop i` to `sucPath i`.
|
||||
6. Generalize this across the circle.
|
||||
|
||||
In this part, we focus on `1`, `2` and `3`.
|
||||
>>>>>>> df5d7c381b1adae1d2547df95f5d73bcf3447ac4
|
||||
|
||||
## `sucℤ`
|
||||
|
||||
@ -77,4 +89,13 @@ In this part, we focus on `1` and `2`.
|
||||
- Imitating what we did with `flipIso` and
|
||||
give a point `sucℤIso : ℤ ≅ ℤ`
|
||||
by using `predℤ` as the inverse and proving
|
||||
<<<<<<< HEAD
|
||||
`section sucℤ predℤ` and `retract sucℤ predℤ`.
|
||||
=======
|
||||
`section sucℤ predℤ` and `retract sucℤ predℤ`.
|
||||
|
||||
## `sucℤ` is a path
|
||||
|
||||
- Imitating what we did with `flipPath`,
|
||||
upgrade `sucℤIso` to `sucℤPath`.
|
||||
>>>>>>> df5d7c381b1adae1d2547df95f5d73bcf3447ac4
|
||||
|
54
1FundamentalGroup/Quest2Part1.md
Normal file
54
1FundamentalGroup/Quest2Part1.md
Normal file
@ -0,0 +1,54 @@
|
||||
# Comparison maps between `Ω S¹ base` and `ℤ` - `spinCount`
|
||||
|
||||
## The `ℤ`-bundle `helix`
|
||||
|
||||
We want to make a `ℤ`-bundle over `S¹` by
|
||||
'copying ℤ across the loop via `sucℤPath`'.
|
||||
In `Quest2.agda` locate
|
||||
|
||||
```agda
|
||||
helix : S¹ → Type
|
||||
helix = {!!}
|
||||
```
|
||||
|
||||
Try to imitate the definition of `doubleCover` to define the bunlde `helix`.
|
||||
You should compare your definition to ours in `Quest2Solutions.agda`.
|
||||
Note that we have called this `helix`, since the picture of this `ℤ`-bundle
|
||||
looks like
|
||||
|
||||
<img src="images/helix.png"
|
||||
alt="helix"
|
||||
width="1000"
|
||||
class="center"/>
|
||||
|
||||
## Counting loops
|
||||
|
||||
Now we can do what was originally difficult - constructing an inverse map
|
||||
(over all points).
|
||||
Now we want to be able to count how many times a path `base ≡ base` loops around
|
||||
`S¹`, which we can do now using `helix` and finding end points of 'lifted' paths.
|
||||
For example the path `loop` should loop around once,
|
||||
counted by looking at the end point of 'lifted' `loop`, starting at `0`.
|
||||
Hence try to define
|
||||
|
||||
```agda
|
||||
spinCountBase : base ≡ base → helix base
|
||||
spinCountBase = {!!}
|
||||
```
|
||||
|
||||
Try computing a few values using `C-c C-n`,
|
||||
you can try it on `refl`, `loop`, `loop 3 times`, `loop (- 1) times` and so on.
|
||||
|
||||
## Generalising
|
||||
|
||||
The function `spinCountBase`
|
||||
can actually be improved without any extra work to a function on all of `S¹`
|
||||
|
||||
```agda
|
||||
spinCount : (x : S¹) → base ≡ x → helix x
|
||||
spinCount = {!!}
|
||||
```
|
||||
|
||||
We will show that this and a general version of `loop_times` are
|
||||
inverses of each other over `S¹`, in particular obtaining an isomorphism
|
||||
between `base ≡ base` and `ℤ`.
|
43
README.md
43
README.md
@ -43,26 +43,29 @@ Try opening `Trinitarianism/Quest0.agda` in Emacs
|
||||
and do `Ctrl-c Ctrl-l`.
|
||||
Some text should be highlighted, and any `?` should turn into `{ }`.
|
||||
|
||||
## How the game works
|
||||
## Where to start?
|
||||
|
||||
Our Game is currently under development.
|
||||
As of now you can try the _quests_ in the `Trinitarianism` folder.
|
||||
Each quest consists of three files, for example :
|
||||
- `Trinitarianism/Quest0.md` is the guide for the quest.
|
||||
In there, you will find details of the tasks
|
||||
you must finish in order to complete the quest.
|
||||
For now, it is recommended that
|
||||
you view these online within github.
|
||||
- `Trinitarianism/Quest0.agda` is the agda file in which
|
||||
you do the quest.
|
||||
- `Trinitarianism/Quest0Solutions.agda` contains
|
||||
solutions to the tasks in the quest.
|
||||
You can start with `0Trinitarianism` if you are interested in
|
||||
how logic, type theory and category theory come together
|
||||
as different ways to view the same thing.
|
||||
If you are more interested in homotopy theory,
|
||||
try `1FundamentalGroup` where we show that the
|
||||
fundamental group of `S¹` is `ℤ`.
|
||||
|
||||
## Emacs and Agda usage
|
||||
We have a file with a list of [basic Emacs commands](
|
||||
## How to start?
|
||||
|
||||
To start with `1FundamentalGroup` (for example),
|
||||
find the GitHub page [`1FundamentalGroup/Quest0Part0.md`](
|
||||
https://github.com/thehottgame/TheHoTTGame/blob/main/1FundamentalGroup/Quest0Part0.md
|
||||
)
|
||||
and follow the instructions there,
|
||||
then trying the following files in the same directory.
|
||||
Open up the corresponding `.agda` file in `emacs` to
|
||||
follow along with the instructions in the quests.
|
||||
|
||||
## Emacs issues
|
||||
|
||||
If you can't figure out `emacs` or forget some command, then
|
||||
try consulting our guide for [basic Emacs commands](
|
||||
https://github.com/thehottgame/TheHoTTGame/blob/main/EmacsCommands.md
|
||||
),
|
||||
but you _should_ be able to learn how to use Agda as you go along.
|
||||
|
||||
## Feedback
|
||||
If you have any feedback please contact the devs.
|
||||
).
|
||||
|
Binary file not shown.
BIN
_build/2.6.2/agda/1FundamentalGroup/Quest2.agdai
Normal file
BIN
_build/2.6.2/agda/1FundamentalGroup/Quest2.agdai
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user