From 70452738044f4607071af5f47bb85c455e21c252 Mon Sep 17 00:00:00 2001 From: jlh <48520973+Jlh18@users.noreply.github.com> Date: Sun, 17 Apr 2022 10:29:20 +0100 Subject: [PATCH] Delete 1FundamentalGroup/Shelf directory --- 1FundamentalGroup/Shelf/questExtras.agda | 126 ----------------------- 1 file changed, 126 deletions(-) delete mode 100644 1FundamentalGroup/Shelf/questExtras.agda diff --git a/1FundamentalGroup/Shelf/questExtras.agda b/1FundamentalGroup/Shelf/questExtras.agda deleted file mode 100644 index d1b09aa..0000000 --- a/1FundamentalGroup/Shelf/questExtras.agda +++ /dev/null @@ -1,126 +0,0 @@ -module 1FundamentalGroup.Shelf.questExtras where - -open import Cubical.Foundations.Prelude -open import Cubical.HITs.S1 -open import Cubical.Data.Empty -open import 1FundamentalGroup.Quest0Solutions - --- ¬isSetS¹ : isSet S¹ → ⊥ --- ¬isSetS¹ = {!!} - --- ¬isPropS¹ : isProp S¹ → ⊥ --- ¬isPropS¹ = {!!} - --------------solutions------ -¬isSetS¹ : isSet S¹ → ⊥ -¬isSetS¹ h = Refl≢loop (h base base Refl loop) - -¬isPropS¹ : isProp S¹ → ⊥ -¬isPropS¹ h = ¬isSetS¹ (isProp→isSet h) - - -------------J exercises---------------- - -private - variable - A B : Type - -Cong : {x y : A} (f : A → B) → x ≡ y → f x ≡ f y -Cong {A} {B} {x} f = J (λ y p → f x ≡ f y) refl - -Sym : {x y : A} → x ≡ y → y ≡ x -Sym {A} {x} = J (λ y1 p → y1 ≡ x) refl - -SymRefl : {x : A} → Sym {A} {x} {x} (refl) ≡ refl -SymRefl {A} {x} = JRefl (λ y1 p → y1 ≡ x) refl - -Trans : {x y z : A} → x ≡ y → y ≡ z → x ≡ z -Trans {x = x} {z = z} = J (λ y1 p → y1 ≡ z → x ≡ z) λ q → q - -_⋆_ = Trans -- input \* - -TransRefl : {x y : A} → Trans {A} {x} {x} {y} refl ≡ λ q → q -TransRefl {x = x} {y = y} = JRefl ((λ y1 p → y1 ≡ y → x ≡ y)) λ q → q - -refl⋆refl : {x : A} → refl {_} {A} {x} ⋆ refl ≡ refl -refl⋆refl = Cong (λ f → f refl) TransRefl - -⋆refl : {x y : A} (p : x ≡ y) → Trans p refl ≡ p -⋆refl {A} {x} {y} = J (λ y p → Trans p refl ≡ p) refl⋆refl - -refl⋆ : {A : Type} {x y : A} (p : x ≡ y) → refl ⋆ p ≡ p -refl⋆ = J (λ y p → refl ⋆ p ≡ p) refl⋆refl - - -⋆Sym : {A : Type} {x y : A} (p : x ≡ y) → p ⋆ Sym p ≡ refl -⋆Sym = J (λ y p → p ⋆ Sym p ≡ refl) - ( - refl ⋆ Sym refl - ≡⟨ cong (λ p → refl ⋆ p) SymRefl ⟩ - refl ⋆ refl - ≡⟨ refl⋆refl ⟩ - refl ∎ - ) - - -Sym⋆ : {A : Type} {x y : A} (p : x ≡ y) → (Sym p) ⋆ p ≡ refl -Sym⋆ = J (λ y p → (Sym p) ⋆ p ≡ refl) - ( - (Sym refl) ⋆ refl - ≡⟨ cong (λ p → p ⋆ refl) SymRefl ⟩ - refl ⋆ refl - ≡⟨ refl⋆refl ⟩ - refl ∎ - ) - -Assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z) - → (p ⋆ q) ⋆ r ≡ p ⋆ (q ⋆ r) -Assoc {A} = J - -- casing on p - (λ x p → {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ⋆ q) ⋆ r ≡ p ⋆ (q ⋆ r)) - -- reduce to showing when p = refl - λ q r → ((refl ⋆ q) ⋆ r) - ≡⟨ cong (λ p' → p' ⋆ r) (refl⋆ q) ⟩ - (q ⋆ r) - ≡⟨ Sym (refl⋆ (q ⋆ r)) ⟩ - (refl ⋆ (q ⋆ r)) ∎ - - --------------original------------------- - - --- ∙refl : {A : Type} {x y : A} (p : x ≡ y) → p ∙ refl ≡ p --- ∙refl = J (λ y p → p ∙ refl ≡ p) refl∙refl - --- refl∙ : {A : Type} {x y : A} (p : x ≡ y) → refl ∙ p ≡ p --- refl∙ = J (λ y p → refl ∙ p ≡ p) refl∙refl - --- ∙sym : {A : Type} {x y : A} (p : x ≡ y) → p ∙ sym p ≡ refl --- ∙sym = J (λ y p → p ∙ sym p ≡ refl) --- ( --- refl ∙ sym refl --- ≡⟨ cong (λ p → refl ∙ p) symRefl ⟩ --- refl ∙ refl --- ≡⟨ refl∙refl ⟩ --- refl ∎) - --- sym∙ : {A : Type} {x y : A} (p : x ≡ y) → (sym p) ∙ p ≡ refl --- sym∙ = J (λ y p → (sym p) ∙ p ≡ refl) --- ( --- (sym refl) ∙ refl --- ≡⟨ cong (λ p → p ∙ refl) symRefl ⟩ --- refl ∙ refl --- ≡⟨ refl∙refl ⟩ --- refl ∎) - --- assoc : {A : Type} {w x : A} (p : w ≡ x) {y z : A} (q : x ≡ y) (r : y ≡ z) --- → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r) --- assoc {A} = J --- -- casing on p --- (λ x p → {y z : A} (q : x ≡ y) (r : y ≡ z) → (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)) --- -- reduce to showing when p = refl --- λ q r → (refl ∙ q) ∙ r --- ≡⟨ cong (λ p' → p' ∙ r) (refl∙ q) ⟩ --- q ∙ r --- ≡⟨ sym (refl∙ (q ∙ r)) ⟩ --- refl ∙ q ∙ r ∎