added quest2solutions.agda
This commit is contained in:
parent
ddfecdd209
commit
40ba57887c
@ -5,4 +5,4 @@ open import Cubical.Data.Int using (ℤ ; pos ; negsuc ; -_) public
|
|||||||
open import Cubical.Foundations.Isomorphism public
|
open import Cubical.Foundations.Isomorphism public
|
||||||
open import Cubical.Foundations.Prelude renaming (subst to endPt) public
|
open import Cubical.Foundations.Prelude renaming (subst to endPt) public
|
||||||
open import Cubical.HITs.S1 using (S¹ ; base ; loop) public
|
open import Cubical.HITs.S1 using (S¹ ; base ; loop) public
|
||||||
open import 1FundamentalGroup.Quest1 public
|
open import 1FundamentalGroup.Quest1Solutions public
|
||||||
|
@ -1,12 +1,6 @@
|
|||||||
|
-- ignore
|
||||||
module 1FundamentalGroup.Quest0Solutions where
|
module 1FundamentalGroup.Quest0Solutions where
|
||||||
|
open import 1FundamentalGroup.Preambles.P0
|
||||||
open import Cubical.Data.Empty
|
|
||||||
open import Cubical.Data.Unit renaming ( Unit to ⊤ )
|
|
||||||
open import Cubical.Data.Bool
|
|
||||||
open import Cubical.Foundations.Prelude renaming ( subst to endPt )
|
|
||||||
open import Cubical.Foundations.Isomorphism renaming ( Iso to _≅_ )
|
|
||||||
open import Cubical.Foundations.Path
|
|
||||||
open import Cubical.HITs.S1
|
|
||||||
|
|
||||||
Refl : base ≡ base
|
Refl : base ≡ base
|
||||||
Refl = λ i → base
|
Refl = λ i → base
|
||||||
|
@ -2,40 +2,27 @@
|
|||||||
module 1FundamentalGroup.Quest2 where
|
module 1FundamentalGroup.Quest2 where
|
||||||
open import 1FundamentalGroup.Preambles.P2
|
open import 1FundamentalGroup.Preambles.P2
|
||||||
|
|
||||||
sucℤ : ℤ → ℤ
|
{-
|
||||||
sucℤ (pos n) = pos (suc n)
|
The definition of sucℤ goes here.
|
||||||
sucℤ (negsuc zero) = pos zero
|
-}
|
||||||
sucℤ (negsuc (suc n)) = negsuc n
|
|
||||||
|
|
||||||
predℤ : ℤ → ℤ
|
{-
|
||||||
predℤ (pos zero) = negsuc zero
|
The definition of predℤ goes here.
|
||||||
predℤ (pos (suc n)) = pos n
|
-}
|
||||||
predℤ (negsuc n) = negsuc (suc n)
|
|
||||||
|
|
||||||
sucℤIso : Iso ℤ ℤ
|
{-
|
||||||
sucℤIso = iso sucℤ predℤ s r where
|
The definition of sucℤIso goes here.
|
||||||
|
-}
|
||||||
|
|
||||||
s : section sucℤ predℤ
|
{-
|
||||||
s (pos zero) = refl
|
The definition of sucℤPath goes here.
|
||||||
s (pos (suc n)) = refl
|
-}
|
||||||
s (negsuc zero) = refl
|
|
||||||
s (negsuc (suc n)) = refl
|
|
||||||
|
|
||||||
r : retract sucℤ predℤ
|
|
||||||
r (pos zero) = refl
|
|
||||||
r (pos (suc n)) = refl
|
|
||||||
r (negsuc zero) = refl
|
|
||||||
r (negsuc (suc n)) = refl
|
|
||||||
|
|
||||||
sucℤPath : ℤ ≡ ℤ
|
|
||||||
sucℤPath = isoToPath sucℤIso
|
|
||||||
|
|
||||||
helix : S¹ → Type
|
helix : S¹ → Type
|
||||||
helix base = ℤ
|
helix = {!!}
|
||||||
helix (loop i) = sucℤPath i
|
|
||||||
|
|
||||||
spinCountBase : base ≡ base → ℤ
|
spinCountBase : base ≡ base → ℤ
|
||||||
spinCountBase p = endPt helix p (pos zero)
|
spinCountBase = ?
|
||||||
|
|
||||||
spinCount : (x : S¹) → base ≡ x → helix x
|
spinCount : (x : S¹) → base ≡ x → helix x
|
||||||
spinCount x p = endPt helix p (pos zero)
|
spinCount = ?
|
||||||
|
41
1FundamentalGroup/Quest2Solutions.agda
Normal file
41
1FundamentalGroup/Quest2Solutions.agda
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
-- ignore
|
||||||
|
module 1FundamentalGroup.Quest2Solutions where
|
||||||
|
open import 1FundamentalGroup.Preambles.P2
|
||||||
|
|
||||||
|
sucℤ : ℤ → ℤ
|
||||||
|
sucℤ (pos n) = pos (suc n)
|
||||||
|
sucℤ (negsuc zero) = pos zero
|
||||||
|
sucℤ (negsuc (suc n)) = negsuc n
|
||||||
|
|
||||||
|
predℤ : ℤ → ℤ
|
||||||
|
predℤ (pos zero) = negsuc zero
|
||||||
|
predℤ (pos (suc n)) = pos n
|
||||||
|
predℤ (negsuc n) = negsuc (suc n)
|
||||||
|
|
||||||
|
sucℤIso : Iso ℤ ℤ
|
||||||
|
sucℤIso = iso sucℤ predℤ s r where
|
||||||
|
|
||||||
|
s : section sucℤ predℤ
|
||||||
|
s (pos zero) = refl
|
||||||
|
s (pos (suc n)) = refl
|
||||||
|
s (negsuc zero) = refl
|
||||||
|
s (negsuc (suc n)) = refl
|
||||||
|
|
||||||
|
r : retract sucℤ predℤ
|
||||||
|
r (pos zero) = refl
|
||||||
|
r (pos (suc n)) = refl
|
||||||
|
r (negsuc zero) = refl
|
||||||
|
r (negsuc (suc n)) = refl
|
||||||
|
|
||||||
|
sucℤPath : ℤ ≡ ℤ
|
||||||
|
sucℤPath = isoToPath sucℤIso
|
||||||
|
|
||||||
|
helix : S¹ → Type
|
||||||
|
helix base = ℤ
|
||||||
|
helix (loop i) = sucℤPath i
|
||||||
|
|
||||||
|
spinCountBase : base ≡ base → ℤ
|
||||||
|
spinCountBase p = endPt helix p (pos zero)
|
||||||
|
|
||||||
|
spinCount : (x : S¹) → base ≡ x → helix x
|
||||||
|
spinCount x p = endPt helix p (pos zero)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
_build/2.6.2/agda/1FundamentalGroup/Quest2Solutions.agdai
Normal file
BIN
_build/2.6.2/agda/1FundamentalGroup/Quest2Solutions.agdai
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user