Preambles put up for Quests0,1,2; feedbackG edits

This commit is contained in:
Jlh18 2021-09-23 12:10:25 +01:00
parent 70fd1aa024
commit 03ca8bb437
13 changed files with 57 additions and 50 deletions

View File

@ -0,0 +1,9 @@
module 1FundamentalGroup.Preambles.P0 where
open import Cubical.Data.Empty public
open import Cubical.Data.Unit renaming ( Unit to ) public
open import Cubical.Data.Bool public
open import Cubical.Foundations.Prelude renaming ( subst to endPt ) public
open import Cubical.Foundations.Isomorphism renaming ( Iso to _≅_ ) public
open import Cubical.Foundations.Path public
open import Cubical.HITs.S1 public

View File

@ -0,0 +1,9 @@
module 1FundamentalGroup.Preambles.P1 where
open import Cubical.HITs.S1 public
open import Cubical.Data.Nat using ( ; suc ; zero) public
open import Cubical.Data.Int using ( ; pos ; negsuc) public
open import Cubical.Data.Empty public
open import Cubical.Foundations.Prelude public
open import Cubical.Foundations.HLevels public
open import 1FundamentalGroup.Quest0Solutions using ( Refl ; Refl≢loop ) public

View File

@ -0,0 +1,8 @@
module 1FundamentalGroup.Preambles.P2 where
open import Cubical.Data.Nat public
open import Cubical.Data.Int using ( ; pos ; negsuc ; -_) public
open import Cubical.Foundations.Isomorphism public
open import Cubical.Foundations.Prelude renaming (subst to endPt) public
open import Cubical.HITs.S1 using ( ; base ; loop) public
open import 1FundamentalGroup.Quest1 public

View File

@ -1,12 +1,6 @@
module 1FundamentalGroup.Quest0 where
open import Cubical.Data.Empty
open import Cubical.Data.Unit renaming ( Unit to )
open import Cubical.Data.Bool
open import Cubical.Foundations.Prelude renaming ( subst to endPt )
open import Cubical.Foundations.Isomorphism renaming ( Iso to _≅_ )
open import Cubical.Foundations.Path
open import Cubical.HITs.S1
open import 1FundamentalGroup.Preambles.P0
Refl : base base
Refl = {!!}

View File

@ -1,13 +1,6 @@
module 1FundamentalGroup.Quest1 where
open import Cubical.Core.Everything
open import Cubical.HITs.S1
open import Cubical.Data.Nat
open import Cubical.Data.Int
open import Cubical.Data.Empty
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import 1FundamentalGroup.Quest0Solutions using ( Refl ; Refl≢loop )
open import 1FundamentalGroup.Preambles.P1
Ω : (A : Type) (a : A) Type
Ω A a = a a

View File

@ -1,12 +1,6 @@
module 1FundamentalGroup.Quest2 where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
open import Cubical.Data.Int using ( ; pos ; negsuc ; -_)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude renaming (subst to endPt)
open import Cubical.HITs.S1 using ( ; base ; loop)
open import 1FundamentalGroup.Quest1
open import 1FundamentalGroup.Preambles.P2
suc :
suc (pos n) = pos (suc n)
@ -41,7 +35,7 @@ helix base =
helix (loop i) = sucPath i
spinCountBase : base base
spinCountBase p = endPt helix p 0
spinCountBase p = endPt helix p (pos zero)
spinCount : (x : ) base x helix x
spinCount x p = endPt helix p 0
spinCount x p = endPt helix p (pos zero)

View File

@ -2,43 +2,43 @@
## Subject info
- has some experience with type theory and haskell
[] has some experience with type theory and haskell
## Quest0/Part0
- clarify the notation `a : A`
- hide the imports
- definition of inductive type doesn't make sense
[x] clarify the notation `a : A`
[x] hide the imports
[x] definition of inductive type doesn't make sense
without the further details.
- confusion of `{!!}` and `{0}` and `?`
- comparing holes to agda-info window is intuitive
- error on firsts refine
- add at each step what the agda-info window looks like
- confusion about hole numbers. "just ignore them"
- subject tries to read constraint in agda-info window.
[x] confusion of `{!!}` and `{0}` and `?`
[x] comparing holes to agda-info window is intuitive
[x] error on firsts refine
[x] add at each step what the agda-info window looks like
[x] confusion about hole numbers. "just ignore them"
[x] subject tries to read constraint in agda-info window.
Shld deal with this somehow.
- emphasize no need to fill holes in order.
[] emphasize no need to fill holes in order.
## Quest0/Part1
- subject confused about 'space of spaces'.
[x] subject confused about 'space of spaces'.
More specifically, need to say `a : A` means "`a` is a point of the space `A`".
- we shld say `a ≡ b` means space of paths from `a` to `b`.
- 'contradiction' is a pre-existing concept in subject brain.
- "not sure that helps" - subject about definition of `Bool`
- "is `flipPath` taking a point from `Bool` to another point of `Bool`
[x] we shld say `a ≡ b` means space of paths from `a` to `b`.
[-] 'contradiction' is a pre-existing concept in subject brain.
[] "not sure that helps" - subject about definition of `Bool`
[] "is `flipPath` taking a point from `Bool` to another point of `Bool`
or is it taking a space to another space?"
- "just some terminology" - subject on the definition of _fiber_.
[] "just some terminology" - subject on the definition of _fiber_.
Subject did not take in the picture of what it is called fiber.
- need to add earlier how to check goal of holes.
- need to be clear _we are assuming `flipPath` is constructed already_.
- overall : need to be clearer that `Type` is space of spaces,
[] need to add earlier how to check goal of holes.
[] need to be clear _we are assuming `flipPath` is constructed already_.
[] overall : need to be clearer that `Type` is space of spaces,
and paths in `Type` are saying which spaces are the same.
## Quesst0/Part2
- For the `iso` bit, change to just `C-c C-r` cuz `Iso` only has one constructor.
- say you can check def of `Iso` by using `SPC c d`
- say "just write `s` and `r` and write the rest then load".
- emphasize agda is indentation sensitive.
- subject unexpectedly extracts lemma `true ≡ true`.
[] For the `iso` bit, change to just `C-c C-r` cuz `Iso` only has one constructor.
[] say you can check def of `Iso` by using `SPC c d`
[] say "just write `s` and `r` and write the rest then load".
[] emphasize agda is indentation sensitive.
[] subject unexpectedly extracts lemma `true ≡ true`.

Binary file not shown.

Binary file not shown.

Binary file not shown.